Metamath Proof Explorer


Theorem ac5b

Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999)

Ref Expression
Hypothesis ac5b.1 AV
Assertion ac5b xAxff:AAxAfxx

Proof

Step Hyp Ref Expression
1 ac5b.1 AV
2 1 uniex AV
3 numth3 AVAdomcard
4 2 3 mp1i xAxAdomcard
5 neirr ¬
6 neeq1 x=x
7 6 rspccv xAxA
8 5 7 mtoi xAx¬A
9 ac5num Adomcard¬Aff:AAxAfxx
10 4 8 9 syl2anc xAxff:AAxAfxx