Metamath Proof Explorer


Theorem ackbij1lem11

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1lem11 A𝒫ωFinBAB𝒫ωFin

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 ssexg BAA𝒫ωFinBV
3 elinel1 A𝒫ωFinA𝒫ω
4 3 elpwid A𝒫ωFinAω
5 sstr BAAωBω
6 4 5 sylan2 BAA𝒫ωFinBω
7 2 6 elpwd BAA𝒫ωFinB𝒫ω
8 7 ancoms A𝒫ωFinBAB𝒫ω
9 elinel2 A𝒫ωFinAFin
10 ssfi AFinBABFin
11 9 10 sylan A𝒫ωFinBABFin
12 8 11 elind A𝒫ωFinBAB𝒫ωFin