Metamath Proof Explorer


Theorem ackbij1lem11

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
Assertion ackbij1lem11
|- ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ( ~P _om i^i Fin ) )

Proof

Step Hyp Ref Expression
1 ackbij.f
 |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
2 ssexg
 |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. _V )
3 elinel1
 |-  ( A e. ( ~P _om i^i Fin ) -> A e. ~P _om )
4 3 elpwid
 |-  ( A e. ( ~P _om i^i Fin ) -> A C_ _om )
5 sstr
 |-  ( ( B C_ A /\ A C_ _om ) -> B C_ _om )
6 4 5 sylan2
 |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B C_ _om )
7 2 6 elpwd
 |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. ~P _om )
8 7 ancoms
 |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ~P _om )
9 elinel2
 |-  ( A e. ( ~P _om i^i Fin ) -> A e. Fin )
10 ssfi
 |-  ( ( A e. Fin /\ B C_ A ) -> B e. Fin )
11 9 10 sylan
 |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. Fin )
12 8 11 elind
 |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ( ~P _om i^i Fin ) )