| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 2 |
1
|
ackbij1lem10 |
|- F : ( ~P _om i^i Fin ) --> _om |
| 3 |
1
|
ackbij1lem11 |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> A e. ( ~P _om i^i Fin ) ) |
| 4 |
|
ffvelcdm |
|- ( ( F : ( ~P _om i^i Fin ) --> _om /\ A e. ( ~P _om i^i Fin ) ) -> ( F ` A ) e. _om ) |
| 5 |
2 3 4
|
sylancr |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) e. _om ) |
| 6 |
|
difssd |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( B \ A ) C_ B ) |
| 7 |
1
|
ackbij1lem11 |
|- ( ( B e. ( ~P _om i^i Fin ) /\ ( B \ A ) C_ B ) -> ( B \ A ) e. ( ~P _om i^i Fin ) ) |
| 8 |
6 7
|
syldan |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( B \ A ) e. ( ~P _om i^i Fin ) ) |
| 9 |
|
ffvelcdm |
|- ( ( F : ( ~P _om i^i Fin ) --> _om /\ ( B \ A ) e. ( ~P _om i^i Fin ) ) -> ( F ` ( B \ A ) ) e. _om ) |
| 10 |
2 8 9
|
sylancr |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( B \ A ) ) e. _om ) |
| 11 |
|
nnaword1 |
|- ( ( ( F ` A ) e. _om /\ ( F ` ( B \ A ) ) e. _om ) -> ( F ` A ) C_ ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 12 |
5 10 11
|
syl2anc |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) C_ ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 13 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
| 14 |
13
|
a1i |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( A i^i ( B \ A ) ) = (/) ) |
| 15 |
1
|
ackbij1lem9 |
|- ( ( A e. ( ~P _om i^i Fin ) /\ ( B \ A ) e. ( ~P _om i^i Fin ) /\ ( A i^i ( B \ A ) ) = (/) ) -> ( F ` ( A u. ( B \ A ) ) ) = ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 16 |
3 8 14 15
|
syl3anc |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( A u. ( B \ A ) ) ) = ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 17 |
|
undif |
|- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
| 18 |
17
|
biimpi |
|- ( A C_ B -> ( A u. ( B \ A ) ) = B ) |
| 19 |
18
|
adantl |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( A u. ( B \ A ) ) = B ) |
| 20 |
19
|
fveq2d |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( A u. ( B \ A ) ) ) = ( F ` B ) ) |
| 21 |
16 20
|
eqtr3d |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( ( F ` A ) +o ( F ` ( B \ A ) ) ) = ( F ` B ) ) |
| 22 |
12 21
|
sseqtrd |
|- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) C_ ( F ` B ) ) |