| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 2 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 3 |
1
|
ackbij1lem11 |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
| 4 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ω ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ ω ) |
| 6 |
|
difssd |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) |
| 7 |
1
|
ackbij1lem11 |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 8 |
6 7
|
syldan |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 9 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) |
| 10 |
2 8 9
|
sylancr |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) |
| 11 |
|
nnaword1 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 12 |
5 10 11
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 13 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 14 |
13
|
a1i |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 15 |
1
|
ackbij1lem9 |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 16 |
3 8 14 15
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 17 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 18 |
17
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 21 |
16 20
|
eqtr3d |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 22 |
12 21
|
sseqtrd |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) |