Metamath Proof Explorer


Theorem ackbij1lem12

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
Assertion ackbij1lem12 ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ⊆ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
2 1 ackbij1lem10 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω
3 1 ackbij1lem11 ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) )
4 ffvelrn ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹𝐴 ) ∈ ω )
5 2 3 4 sylancr ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ∈ ω )
6 difssd ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐵𝐴 ) ⊆ 𝐵 )
7 1 ackbij1lem11 ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵𝐴 ) ⊆ 𝐵 ) → ( 𝐵𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) )
8 6 7 syldan ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐵𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) )
9 ffvelrn ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ ( 𝐵𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐵𝐴 ) ) ∈ ω )
10 2 8 9 sylancr ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹 ‘ ( 𝐵𝐴 ) ) ∈ ω )
11 nnaword1 ( ( ( 𝐹𝐴 ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐵𝐴 ) ) ∈ ω ) → ( 𝐹𝐴 ) ⊆ ( ( 𝐹𝐴 ) +o ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
12 5 10 11 syl2anc ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ⊆ ( ( 𝐹𝐴 ) +o ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
13 disjdif ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅
14 13 a1i ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅ )
15 1 ackbij1lem9 ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) = ( ( 𝐹𝐴 ) +o ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
16 3 8 14 15 syl3anc ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) = ( ( 𝐹𝐴 ) +o ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
17 undif ( 𝐴𝐵 ↔ ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
18 17 biimpi ( 𝐴𝐵 → ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
19 18 adantl ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
20 19 fveq2d ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) = ( 𝐹𝐵 ) )
21 16 20 eqtr3d ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐴 ) +o ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) = ( 𝐹𝐵 ) )
22 12 21 sseqtrd ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ⊆ ( 𝐹𝐵 ) )