Metamath Proof Explorer


Theorem ackbij1lem6

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem6 A𝒫ωFinB𝒫ωFinAB𝒫ωFin

Proof

Step Hyp Ref Expression
1 elinel2 A𝒫ωFinAFin
2 elinel2 B𝒫ωFinBFin
3 unfi AFinBFinABFin
4 1 2 3 syl2an A𝒫ωFinB𝒫ωFinABFin
5 elinel1 A𝒫ωFinA𝒫ω
6 elinel1 B𝒫ωFinB𝒫ω
7 elpwi A𝒫ωAω
8 elpwi B𝒫ωBω
9 simpl AωBωAω
10 simpr AωBωBω
11 9 10 unssd AωBωABω
12 7 8 11 syl2an A𝒫ωB𝒫ωABω
13 5 6 12 syl2an A𝒫ωFinB𝒫ωFinABω
14 4 13 elpwd A𝒫ωFinB𝒫ωFinAB𝒫ω
15 14 4 elind A𝒫ωFinB𝒫ωFinAB𝒫ωFin