Metamath Proof Explorer


Theorem ackbij1lem8

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1lem8 AωFA=card𝒫A

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 sneq a=Aa=A
3 2 fveq2d a=AFa=FA
4 pweq a=A𝒫a=𝒫A
5 4 fveq2d a=Acard𝒫a=card𝒫A
6 3 5 eqeq12d a=AFa=card𝒫aFA=card𝒫A
7 ackbij1lem4 aωa𝒫ωFin
8 1 ackbij1lem7 a𝒫ωFinFa=cardyay×𝒫y
9 7 8 syl aωFa=cardyay×𝒫y
10 vex aV
11 sneq y=ay=a
12 pweq y=a𝒫y=𝒫a
13 11 12 xpeq12d y=ay×𝒫y=a×𝒫a
14 10 13 iunxsn yay×𝒫y=a×𝒫a
15 14 fveq2i cardyay×𝒫y=carda×𝒫a
16 vpwex 𝒫aV
17 xpsnen2g aV𝒫aVa×𝒫a𝒫a
18 10 16 17 mp2an a×𝒫a𝒫a
19 carden2b a×𝒫a𝒫acarda×𝒫a=card𝒫a
20 18 19 ax-mp carda×𝒫a=card𝒫a
21 15 20 eqtri cardyay×𝒫y=card𝒫a
22 9 21 eqtrdi aωFa=card𝒫a
23 6 22 vtoclga AωFA=card𝒫A