Metamath Proof Explorer


Theorem ackval0

Description: The Ackermann function at 0. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion ackval0 Could not format assertion : No typesetting found for |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-ack Could not format Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) : No typesetting found for |- Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) with typecode |-
2 1 fveq1i Could not format ( Ack ` 0 ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) : No typesetting found for |- ( Ack ` 0 ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) with typecode |-
3 0z 0
4 seq1 Could not format ( 0 e. ZZ -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) ) : No typesetting found for |- ( 0 e. ZZ -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) ) with typecode |-
5 3 4 ax-mp Could not format ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) : No typesetting found for |- ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) with typecode |-
6 0nn0 0 0
7 iftrue i = 0 if i = 0 n 0 n + 1 i = n 0 n + 1
8 eqid i 0 if i = 0 n 0 n + 1 i = i 0 if i = 0 n 0 n + 1 i
9 nn0ex 0 V
10 9 mptex n 0 n + 1 V
11 7 8 10 fvmpt 0 0 i 0 if i = 0 n 0 n + 1 i 0 = n 0 n + 1
12 6 11 ax-mp i 0 if i = 0 n 0 n + 1 i 0 = n 0 n + 1
13 2 5 12 3eqtri Could not format ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) : No typesetting found for |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) with typecode |-