Metamath Proof Explorer


Theorem acosrecl

Description: The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acosrecl A11arccosA

Proof

Step Hyp Ref Expression
1 neg1rr 1
2 1re 1
3 iccssre 1111
4 1 2 3 mp2an 11
5 4 sseli A11A
6 5 recnd A11A
7 acosval AarccosA=π2arcsinA
8 6 7 syl A11arccosA=π2arcsinA
9 halfpire π2
10 asinrecl A11arcsinA
11 resubcl π2arcsinAπ2arcsinA
12 9 10 11 sylancr A11π2arcsinA
13 8 12 eqeltrd A11arccosA