Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addcmpblnr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 | |
|
2 | addclpr | |
|
3 | addclpr | |
|
4 | 2 3 | anim12i | |
5 | 4 | an4s | |
6 | addclpr | |
|
7 | addclpr | |
|
8 | 6 7 | anim12i | |
9 | 8 | an4s | |
10 | 5 9 | anim12i | |
11 | 10 | an4s | |
12 | enrbreq | |
|
13 | 11 12 | syl | |
14 | addcompr | |
|
15 | 14 | oveq1i | |
16 | addasspr | |
|
17 | addasspr | |
|
18 | 15 16 17 | 3eqtr3i | |
19 | 18 | oveq2i | |
20 | addasspr | |
|
21 | addasspr | |
|
22 | 19 20 21 | 3eqtr4i | |
23 | addcompr | |
|
24 | 23 | oveq1i | |
25 | addasspr | |
|
26 | addasspr | |
|
27 | 24 25 26 | 3eqtr3i | |
28 | 27 | oveq2i | |
29 | addasspr | |
|
30 | addasspr | |
|
31 | 28 29 30 | 3eqtr4i | |
32 | 22 31 | eqeq12i | |
33 | 13 32 | bitrdi | |
34 | 1 33 | imbitrrid | |