Metamath Proof Explorer


Theorem addcmpblnr

Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion addcmpblnr A𝑷B𝑷C𝑷D𝑷F𝑷G𝑷R𝑷S𝑷A+𝑷D=B+𝑷CF+𝑷S=G+𝑷RA+𝑷FB+𝑷G~𝑹C+𝑷RD+𝑷S

Proof

Step Hyp Ref Expression
1 oveq12 A+𝑷D=B+𝑷CF+𝑷S=G+𝑷RA+𝑷D+𝑷F+𝑷S=B+𝑷C+𝑷G+𝑷R
2 addclpr A𝑷F𝑷A+𝑷F𝑷
3 addclpr B𝑷G𝑷B+𝑷G𝑷
4 2 3 anim12i A𝑷F𝑷B𝑷G𝑷A+𝑷F𝑷B+𝑷G𝑷
5 4 an4s A𝑷B𝑷F𝑷G𝑷A+𝑷F𝑷B+𝑷G𝑷
6 addclpr C𝑷R𝑷C+𝑷R𝑷
7 addclpr D𝑷S𝑷D+𝑷S𝑷
8 6 7 anim12i C𝑷R𝑷D𝑷S𝑷C+𝑷R𝑷D+𝑷S𝑷
9 8 an4s C𝑷D𝑷R𝑷S𝑷C+𝑷R𝑷D+𝑷S𝑷
10 5 9 anim12i A𝑷B𝑷F𝑷G𝑷C𝑷D𝑷R𝑷S𝑷A+𝑷F𝑷B+𝑷G𝑷C+𝑷R𝑷D+𝑷S𝑷
11 10 an4s A𝑷B𝑷C𝑷D𝑷F𝑷G𝑷R𝑷S𝑷A+𝑷F𝑷B+𝑷G𝑷C+𝑷R𝑷D+𝑷S𝑷
12 enrbreq A+𝑷F𝑷B+𝑷G𝑷C+𝑷R𝑷D+𝑷S𝑷A+𝑷FB+𝑷G~𝑹C+𝑷RD+𝑷SA+𝑷F+𝑷D+𝑷S=B+𝑷G+𝑷C+𝑷R
13 11 12 syl A𝑷B𝑷C𝑷D𝑷F𝑷G𝑷R𝑷S𝑷A+𝑷FB+𝑷G~𝑹C+𝑷RD+𝑷SA+𝑷F+𝑷D+𝑷S=B+𝑷G+𝑷C+𝑷R
14 addcompr F+𝑷D=D+𝑷F
15 14 oveq1i F+𝑷D+𝑷S=D+𝑷F+𝑷S
16 addasspr F+𝑷D+𝑷S=F+𝑷D+𝑷S
17 addasspr D+𝑷F+𝑷S=D+𝑷F+𝑷S
18 15 16 17 3eqtr3i F+𝑷D+𝑷S=D+𝑷F+𝑷S
19 18 oveq2i A+𝑷F+𝑷D+𝑷S=A+𝑷D+𝑷F+𝑷S
20 addasspr A+𝑷F+𝑷D+𝑷S=A+𝑷F+𝑷D+𝑷S
21 addasspr A+𝑷D+𝑷F+𝑷S=A+𝑷D+𝑷F+𝑷S
22 19 20 21 3eqtr4i A+𝑷F+𝑷D+𝑷S=A+𝑷D+𝑷F+𝑷S
23 addcompr G+𝑷C=C+𝑷G
24 23 oveq1i G+𝑷C+𝑷R=C+𝑷G+𝑷R
25 addasspr G+𝑷C+𝑷R=G+𝑷C+𝑷R
26 addasspr C+𝑷G+𝑷R=C+𝑷G+𝑷R
27 24 25 26 3eqtr3i G+𝑷C+𝑷R=C+𝑷G+𝑷R
28 27 oveq2i B+𝑷G+𝑷C+𝑷R=B+𝑷C+𝑷G+𝑷R
29 addasspr B+𝑷G+𝑷C+𝑷R=B+𝑷G+𝑷C+𝑷R
30 addasspr B+𝑷C+𝑷G+𝑷R=B+𝑷C+𝑷G+𝑷R
31 28 29 30 3eqtr4i B+𝑷G+𝑷C+𝑷R=B+𝑷C+𝑷G+𝑷R
32 22 31 eqeq12i A+𝑷F+𝑷D+𝑷S=B+𝑷G+𝑷C+𝑷RA+𝑷D+𝑷F+𝑷S=B+𝑷C+𝑷G+𝑷R
33 13 32 bitrdi A𝑷B𝑷C𝑷D𝑷F𝑷G𝑷R𝑷S𝑷A+𝑷FB+𝑷G~𝑹C+𝑷RD+𝑷SA+𝑷D+𝑷F+𝑷S=B+𝑷C+𝑷G+𝑷R
34 1 33 imbitrrid A𝑷B𝑷C𝑷D𝑷F𝑷G𝑷R𝑷S𝑷A+𝑷D=B+𝑷CF+𝑷S=G+𝑷RA+𝑷FB+𝑷G~𝑹C+𝑷RD+𝑷S