Metamath Proof Explorer


Theorem addcomnq

Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion addcomnq A+𝑸B=B+𝑸A

Proof

Step Hyp Ref Expression
1 addcompq A+𝑝𝑸B=B+𝑝𝑸A
2 1 fveq2i /𝑸A+𝑝𝑸B=/𝑸B+𝑝𝑸A
3 addpqnq A𝑸B𝑸A+𝑸B=/𝑸A+𝑝𝑸B
4 addpqnq B𝑸A𝑸B+𝑸A=/𝑸B+𝑝𝑸A
5 4 ancoms A𝑸B𝑸B+𝑸A=/𝑸B+𝑝𝑸A
6 2 3 5 3eqtr4a A𝑸B𝑸A+𝑸B=B+𝑸A
7 addnqf +𝑸:𝑸×𝑸𝑸
8 7 fdmi dom+𝑸=𝑸×𝑸
9 8 ndmovcom ¬A𝑸B𝑸A+𝑸B=B+𝑸A
10 6 9 pm2.61i A+𝑸B=B+𝑸A