Metamath Proof Explorer


Theorem adddir

Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004)

Ref Expression
Assertion adddir ABCA+BC=AC+BC

Proof

Step Hyp Ref Expression
1 adddi CABCA+B=CA+CB
2 1 3coml ABCCA+B=CA+CB
3 addcl ABA+B
4 mulcom A+BCA+BC=CA+B
5 3 4 stoic3 ABCA+BC=CA+B
6 mulcom ACAC=CA
7 6 3adant2 ABCAC=CA
8 mulcom BCBC=CB
9 8 3adant1 ABCBC=CB
10 7 9 oveq12d ABCAC+BC=CA+CB
11 2 5 10 3eqtr4d ABCA+BC=AC+BC