Metamath Proof Explorer


Theorem adddmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses adddmmbl.1 xφ
adddmmbl.2 _xA
adddmmbl.3 _xB
adddmmbl.4 φSSAlg
adddmmbl.5 φAS
adddmmbl.6 φBS
Assertion adddmmbl φdomxABC+DS

Proof

Step Hyp Ref Expression
1 adddmmbl.1 xφ
2 adddmmbl.2 _xA
3 adddmmbl.3 _xB
4 adddmmbl.4 φSSAlg
5 adddmmbl.5 φAS
6 adddmmbl.6 φBS
7 2 3 nfin _xAB
8 eqid xABC+D=xABC+D
9 ovexd φxABC+DV
10 1 7 8 9 dmmptdff φdomxABC+D=AB
11 4 5 6 salincld φABS
12 10 11 eqeltrd φdomxABC+DS