Metamath Proof Explorer


Theorem addgt0sr

Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion addgt0sr 0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A+𝑹B

Proof

Step Hyp Ref Expression
1 ltrelsr <𝑹𝑹×𝑹
2 1 brel 0𝑹<𝑹A0𝑹𝑹A𝑹
3 ltasr A𝑹0𝑹<𝑹BA+𝑹0𝑹<𝑹A+𝑹B
4 0idsr A𝑹A+𝑹0𝑹=A
5 4 breq1d A𝑹A+𝑹0𝑹<𝑹A+𝑹BA<𝑹A+𝑹B
6 3 5 bitrd A𝑹0𝑹<𝑹BA<𝑹A+𝑹B
7 2 6 simpl2im 0𝑹<𝑹A0𝑹<𝑹BA<𝑹A+𝑹B
8 7 biimpa 0𝑹<𝑹A0𝑹<𝑹BA<𝑹A+𝑹B
9 ltsosr <𝑹Or𝑹
10 9 1 sotri 0𝑹<𝑹AA<𝑹A+𝑹B0𝑹<𝑹A+𝑹B
11 8 10 syldan 0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A+𝑹B