Metamath Proof Explorer


Theorem addlsub

Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a φA
addlsub.b φB
addlsub.c φC
Assertion addlsub φA+B=CA=CB

Proof

Step Hyp Ref Expression
1 addlsub.a φA
2 addlsub.b φB
3 addlsub.c φC
4 oveq1 A+B=CA+B-B=CB
5 1 2 pncand φA+B-B=A
6 eqtr2 A+B-B=CBA+B-B=ACB=A
7 6 eqcomd A+B-B=CBA+B-B=AA=CB
8 7 a1i φA+B-B=CBA+B-B=AA=CB
9 5 8 mpan2d φA+B-B=CBA=CB
10 4 9 syl5 φA+B=CA=CB
11 oveq1 A=CBA+B=C-B+B
12 3 2 npcand φC-B+B=C
13 eqtr A+B=C-B+BC-B+B=CA+B=C
14 13 a1i φA+B=C-B+BC-B+B=CA+B=C
15 12 14 mpan2d φA+B=C-B+BA+B=C
16 11 15 syl5 φA=CBA+B=C
17 10 16 impbid φA+B=CA=CB