Metamath Proof Explorer


Theorem addrval

Description: Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion addrval ACBDA+rB=vAv+Bv

Proof

Step Hyp Ref Expression
1 elex ACAV
2 elex BDBV
3 fveq1 x=Axv=Av
4 fveq1 y=Byv=Bv
5 3 4 oveqan12d x=Ay=Bxv+yv=Av+Bv
6 5 mpteq2dv x=Ay=Bvxv+yv=vAv+Bv
7 df-addr +r=xV,yVvxv+yv
8 reex V
9 8 mptex vAv+BvV
10 6 7 9 ovmpoa AVBVA+rB=vAv+Bv
11 1 2 10 syl2an ACBDA+rB=vAv+Bv