Metamath Proof Explorer


Theorem affineequiv2

Description: Equivalence between two ways of expressing B as an affine combination of A and C . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses affineequiv.a φA
affineequiv.b φB
affineequiv.c φC
affineequiv.d φD
Assertion affineequiv2 φB=DA+1DCBA=1DCA

Proof

Step Hyp Ref Expression
1 affineequiv.a φA
2 affineequiv.b φB
3 affineequiv.c φC
4 affineequiv.d φD
5 1 2 3 4 affineequiv φB=DA+1DCCB=DCA
6 3 1 subcld φCA
7 3 2 subcld φCB
8 4 6 mulcld φDCA
9 6 7 8 subcanad φC-A-CB=C-A-DCACB=DCA
10 3 1 2 nnncan1d φC-A-CB=BA
11 1cnd φ1
12 11 4 6 subdird φ1DCA=1CADCA
13 6 mullidd φ1CA=CA
14 13 oveq1d φ1CADCA=C-A-DCA
15 12 14 eqtr2d φC-A-DCA=1DCA
16 10 15 eqeq12d φC-A-CB=C-A-DCABA=1DCA
17 5 9 16 3bitr2d φB=DA+1DCBA=1DCA