Metamath Proof Explorer


Theorem afv2eu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2eu ∃! x A F x F '''' A = x | A F x

Proof

Step Hyp Ref Expression
1 eubrv ∃! x A F x A V
2 euex ∃! x A F x x A F x
3 eldmg A V A dom F x A F x
4 2 3 syl5ibrcom ∃! x A F x A V A dom F
5 4 impcom A V ∃! x A F x A dom F
6 dfdfat2 F defAt A A dom F ∃! x A F x
7 dfatafv2iota F defAt A F '''' A = ι x | A F x
8 iotauni ∃! x A F x ι x | A F x = x | A F x
9 7 8 sylan9eq F defAt A ∃! x A F x F '''' A = x | A F x
10 9 ex F defAt A ∃! x A F x F '''' A = x | A F x
11 6 10 sylbir A dom F ∃! x A F x ∃! x A F x F '''' A = x | A F x
12 11 expcom ∃! x A F x A dom F ∃! x A F x F '''' A = x | A F x
13 12 pm2.43a ∃! x A F x A dom F F '''' A = x | A F x
14 13 adantl A V ∃! x A F x A dom F F '''' A = x | A F x
15 5 14 mpd A V ∃! x A F x F '''' A = x | A F x
16 1 15 mpancom ∃! x A F x F '''' A = x | A F x