Metamath Proof Explorer


Theorem alephiso3

Description: aleph is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion alephiso3 IsomE,Onrancardω

Proof

Step Hyp Ref Expression
1 alephiso2 IsomE,Onxrancard|ωx
2 omelon ωOn
3 elrncard xrancardxOnyx¬yx
4 3 simplbi xrancardxOn
5 ontri1 ωOnxOnωx¬xω
6 2 4 5 sylancr xrancardωx¬xω
7 6 rabbiia xrancard|ωx=xrancard|¬xω
8 dfdif2 rancardω=xrancard|¬xω
9 7 8 eqtr4i xrancard|ωx=rancardω
10 isoeq5 xrancard|ωx=rancardωIsomE,Onxrancard|ωxIsomE,Onrancardω
11 9 10 ax-mp IsomE,Onxrancard|ωxIsomE,Onrancardω
12 1 11 mpbi IsomE,Onrancardω