Metamath Proof Explorer


Theorem alneu

Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017)

Ref Expression
Assertion alneu x φ ¬ ∃! x φ

Proof

Step Hyp Ref Expression
1 eunex ∃! x φ x ¬ φ
2 exnal x ¬ φ ¬ x φ
3 1 2 sylib ∃! x φ ¬ x φ
4 3 con2i x φ ¬ ∃! x φ