Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Alternate ordered pairs
altxpeq1
Next ⟩
altxpeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
altxpeq1
Description:
Equality for alternate Cartesian products.
(Contributed by
Scott Fenton
, 24-Mar-2012)
Ref
Expression
Assertion
altxpeq1
⊢
A
=
B
→
A
××
C
=
B
××
C
Proof
Step
Hyp
Ref
Expression
1
rexeq
⊢
A
=
B
→
∃
x
∈
A
∃
y
∈
C
z
=
x
y
↔
∃
x
∈
B
∃
y
∈
C
z
=
x
y
2
1
abbidv
⊢
A
=
B
→
z
|
∃
x
∈
A
∃
y
∈
C
z
=
x
y
=
z
|
∃
x
∈
B
∃
y
∈
C
z
=
x
y
3
df-altxp
⊢
A
××
C
=
z
|
∃
x
∈
A
∃
y
∈
C
z
=
x
y
4
df-altxp
⊢
B
××
C
=
z
|
∃
x
∈
B
∃
y
∈
C
z
=
x
y
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
××
C
=
B
××
C