Metamath Proof Explorer


Theorem altxpeq1

Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpeq1 A = B A ×× C = B ×× C

Proof

Step Hyp Ref Expression
1 rexeq A = B x A y C z = x y x B y C z = x y
2 1 abbidv A = B z | x A y C z = x y = z | x B y C z = x y
3 df-altxp A ×× C = z | x A y C z = x y
4 df-altxp B ×× C = z | x B y C z = x y
5 2 3 4 3eqtr4g A = B A ×× C = B ×× C