Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
anan
Next ⟩
triantru3
Metamath Proof Explorer
Ascii
Unicode
Theorem
anan
Description:
Multiple commutations in conjunction.
(Contributed by
Peter Mazsa
, 7-Mar-2020)
Ref
Expression
Assertion
anan
⊢
φ
∧
ψ
∧
χ
∧
φ
∧
θ
∧
τ
↔
ψ
∧
θ
∧
φ
∧
χ
∧
τ
Proof
Step
Hyp
Ref
Expression
1
an4
⊢
φ
∧
ψ
∧
χ
∧
φ
∧
θ
∧
τ
↔
φ
∧
ψ
∧
φ
∧
θ
∧
χ
∧
τ
2
anandi
⊢
φ
∧
ψ
∧
θ
↔
φ
∧
ψ
∧
φ
∧
θ
3
ancom
⊢
φ
∧
ψ
∧
θ
↔
ψ
∧
θ
∧
φ
4
2
3
bitr3i
⊢
φ
∧
ψ
∧
φ
∧
θ
↔
ψ
∧
θ
∧
φ
5
4
anbi1i
⊢
φ
∧
ψ
∧
φ
∧
θ
∧
χ
∧
τ
↔
ψ
∧
θ
∧
φ
∧
χ
∧
τ
6
anass
⊢
ψ
∧
θ
∧
φ
∧
χ
∧
τ
↔
ψ
∧
θ
∧
φ
∧
χ
∧
τ
7
1
5
6
3bitri
⊢
φ
∧
ψ
∧
χ
∧
φ
∧
θ
∧
τ
↔
ψ
∧
θ
∧
φ
∧
χ
∧
τ