Metamath Proof Explorer


Theorem angrtmuld

Description: Perpendicularity of two vectors does not change under rescaling the second. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 F=x0,y0logyx
angrtmuld.1 φX
angrtmuld.2 φY
angrtmuld.3 φZ
angrtmuld.4 φX0
angrtmuld.5 φY0
angrtmuld.6 φZ0
angrtmuld.7 φZY
Assertion angrtmuld φXFYπ2π2XFZπ2π2

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 angrtmuld.1 φX
3 angrtmuld.2 φY
4 angrtmuld.3 φZ
5 angrtmuld.4 φX0
6 angrtmuld.5 φY0
7 angrtmuld.6 φZ0
8 angrtmuld.7 φZY
9 4 3 7 6 divne0d φZY0
10 9 neneqd φ¬ZY=0
11 biorf ¬ZY=0YX=0ZY=0YX=0
12 10 11 syl φYX=0ZY=0YX=0
13 1 2 5 3 6 angrteqvd φXFYπ2π2YX=0
14 1 2 5 4 7 angrteqvd φXFZπ2π2ZX=0
15 4 3 2 6 5 dmdcan2d φZYYX=ZX
16 15 fveq2d φZYYX=ZX
17 3 2 5 divcld φYX
18 8 17 remul2d φZYYX=ZYYX
19 16 18 eqtr3d φZX=ZYYX
20 19 eqeq1d φZX=0ZYYX=0
21 4 3 6 divcld φZY
22 17 recld φYX
23 22 recnd φYX
24 21 23 mul0ord φZYYX=0ZY=0YX=0
25 14 20 24 3bitrd φXFZπ2π2ZY=0YX=0
26 12 13 25 3bitr4d φXFYπ2π2XFZπ2π2