Metamath Proof Explorer


Theorem ang180lem1

Description: Lemma for ang180 . Show that the "revolution number" N is an integer, using efeq1 to show that since the product of the three arguments A , 1 / ( 1 - A ) , ( A - 1 ) / A is -u 1 , the sum of the logarithms must be an integer multiple of 2pi i away from _pi _i = log ( -u 1 ) . (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypotheses ang.1 F = x 0 , y 0 log y x
ang180lem1.2 T = log 1 1 A + log A 1 A + log A
ang180lem1.3 N = T i 2 π 1 2
Assertion ang180lem1 A A 0 A 1 N T i

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 ang180lem1.2 T = log 1 1 A + log A 1 A + log A
3 ang180lem1.3 N = T i 2 π 1 2
4 picn π
5 2re 2
6 pire π
7 5 6 remulcli 2 π
8 7 recni 2 π
9 2pos 0 < 2
10 pipos 0 < π
11 5 6 9 10 mulgt0ii 0 < 2 π
12 7 11 gt0ne0ii 2 π 0
13 8 12 pm3.2i 2 π 2 π 0
14 ax-icn i
15 ine0 i 0
16 14 15 pm3.2i i i 0
17 divcan5 π 2 π 2 π 0 i i 0 i π i 2 π = π 2 π
18 4 13 16 17 mp3an i π i 2 π = π 2 π
19 6 10 gt0ne0ii π 0
20 recdiv 2 π 2 π 0 π π 0 1 2 π π = π 2 π
21 8 12 4 19 20 mp4an 1 2 π π = π 2 π
22 5 recni 2
23 22 4 19 divcan4i 2 π π = 2
24 23 oveq2i 1 2 π π = 1 2
25 18 21 24 3eqtr2i i π i 2 π = 1 2
26 25 oveq2i T i 2 π i π i 2 π = T i 2 π 1 2
27 ax-1cn 1
28 simp1 A A 0 A 1 A
29 subcl 1 A 1 A
30 27 28 29 sylancr A A 0 A 1 1 A
31 simp3 A A 0 A 1 A 1
32 31 necomd A A 0 A 1 1 A
33 subeq0 1 A 1 A = 0 1 = A
34 27 28 33 sylancr A A 0 A 1 1 A = 0 1 = A
35 34 necon3bid A A 0 A 1 1 A 0 1 A
36 32 35 mpbird A A 0 A 1 1 A 0
37 30 36 reccld A A 0 A 1 1 1 A
38 30 36 recne0d A A 0 A 1 1 1 A 0
39 37 38 logcld A A 0 A 1 log 1 1 A
40 subcl A 1 A 1
41 28 27 40 sylancl A A 0 A 1 A 1
42 simp2 A A 0 A 1 A 0
43 41 28 42 divcld A A 0 A 1 A 1 A
44 subeq0 A 1 A 1 = 0 A = 1
45 28 27 44 sylancl A A 0 A 1 A 1 = 0 A = 1
46 45 necon3bid A A 0 A 1 A 1 0 A 1
47 31 46 mpbird A A 0 A 1 A 1 0
48 41 28 47 42 divne0d A A 0 A 1 A 1 A 0
49 43 48 logcld A A 0 A 1 log A 1 A
50 39 49 addcld A A 0 A 1 log 1 1 A + log A 1 A
51 28 42 logcld A A 0 A 1 log A
52 50 51 addcld A A 0 A 1 log 1 1 A + log A 1 A + log A
53 2 52 eqeltrid A A 0 A 1 T
54 14 4 mulcli i π
55 54 a1i A A 0 A 1 i π
56 14 8 mulcli i 2 π
57 56 a1i A A 0 A 1 i 2 π
58 14 8 15 12 mulne0i i 2 π 0
59 58 a1i A A 0 A 1 i 2 π 0
60 53 55 57 59 divsubdird A A 0 A 1 T i π i 2 π = T i 2 π i π i 2 π
61 16 a1i A A 0 A 1 i i 0
62 13 a1i A A 0 A 1 2 π 2 π 0
63 divdiv1 T i i 0 2 π 2 π 0 T i 2 π = T i 2 π
64 53 61 62 63 syl3anc A A 0 A 1 T i 2 π = T i 2 π
65 64 oveq1d A A 0 A 1 T i 2 π 1 2 = T i 2 π 1 2
66 3 65 eqtrid A A 0 A 1 N = T i 2 π 1 2
67 26 60 66 3eqtr4a A A 0 A 1 T i π i 2 π = N
68 efsub T i π e T i π = e T e i π
69 53 54 68 sylancl A A 0 A 1 e T i π = e T e i π
70 efipi e i π = 1
71 70 oveq2i e T e i π = e T 1
72 2 fveq2i e T = e log 1 1 A + log A 1 A + log A
73 efadd log 1 1 A + log A 1 A log A e log 1 1 A + log A 1 A + log A = e log 1 1 A + log A 1 A e log A
74 50 51 73 syl2anc A A 0 A 1 e log 1 1 A + log A 1 A + log A = e log 1 1 A + log A 1 A e log A
75 efadd log 1 1 A log A 1 A e log 1 1 A + log A 1 A = e log 1 1 A e log A 1 A
76 39 49 75 syl2anc A A 0 A 1 e log 1 1 A + log A 1 A = e log 1 1 A e log A 1 A
77 eflog 1 1 A 1 1 A 0 e log 1 1 A = 1 1 A
78 37 38 77 syl2anc A A 0 A 1 e log 1 1 A = 1 1 A
79 eflog A 1 A A 1 A 0 e log A 1 A = A 1 A
80 43 48 79 syl2anc A A 0 A 1 e log A 1 A = A 1 A
81 78 80 oveq12d A A 0 A 1 e log 1 1 A e log A 1 A = 1 1 A A 1 A
82 37 43 mulcomd A A 0 A 1 1 1 A A 1 A = A 1 A 1 1 A
83 27 a1i A A 0 A 1 1
84 83 30 36 div2negd A A 0 A 1 1 1 A = 1 1 A
85 negsubdi2 1 A 1 A = A 1
86 27 28 85 sylancr A A 0 A 1 1 A = A 1
87 86 oveq2d A A 0 A 1 1 1 A = 1 A 1
88 84 87 eqtr3d A A 0 A 1 1 1 A = 1 A 1
89 88 oveq2d A A 0 A 1 A 1 A 1 1 A = A 1 A 1 A 1
90 neg1cn 1
91 90 a1i A A 0 A 1 1
92 91 41 28 47 42 dmdcand A A 0 A 1 A 1 A 1 A 1 = 1 A
93 82 89 92 3eqtrd A A 0 A 1 1 1 A A 1 A = 1 A
94 76 81 93 3eqtrd A A 0 A 1 e log 1 1 A + log A 1 A = 1 A
95 eflog A A 0 e log A = A
96 28 42 95 syl2anc A A 0 A 1 e log A = A
97 94 96 oveq12d A A 0 A 1 e log 1 1 A + log A 1 A e log A = 1 A A
98 91 28 42 divcan1d A A 0 A 1 1 A A = 1
99 74 97 98 3eqtrd A A 0 A 1 e log 1 1 A + log A 1 A + log A = 1
100 72 99 eqtrid A A 0 A 1 e T = 1
101 100 oveq1d A A 0 A 1 e T 1 = 1 1
102 neg1ne0 1 0
103 90 102 dividi 1 1 = 1
104 101 103 eqtrdi A A 0 A 1 e T 1 = 1
105 71 104 eqtrid A A 0 A 1 e T e i π = 1
106 69 105 eqtrd A A 0 A 1 e T i π = 1
107 subcl T i π T i π
108 53 54 107 sylancl A A 0 A 1 T i π
109 efeq1 T i π e T i π = 1 T i π i 2 π
110 108 109 syl A A 0 A 1 e T i π = 1 T i π i 2 π
111 106 110 mpbid A A 0 A 1 T i π i 2 π
112 67 111 eqeltrrd A A 0 A 1 N
113 14 a1i A A 0 A 1 i
114 15 a1i A A 0 A 1 i 0
115 53 113 114 divcld A A 0 A 1 T i
116 8 a1i A A 0 A 1 2 π
117 12 a1i A A 0 A 1 2 π 0
118 115 116 117 divcan1d A A 0 A 1 T i 2 π 2 π = T i
119 3 oveq1i N + 1 2 = T i 2 π - 1 2 + 1 2
120 115 116 117 divcld A A 0 A 1 T i 2 π
121 halfre 1 2
122 121 recni 1 2
123 npcan T i 2 π 1 2 T i 2 π - 1 2 + 1 2 = T i 2 π
124 120 122 123 sylancl A A 0 A 1 T i 2 π - 1 2 + 1 2 = T i 2 π
125 119 124 eqtrid A A 0 A 1 N + 1 2 = T i 2 π
126 112 zred A A 0 A 1 N
127 readdcl N 1 2 N + 1 2
128 126 121 127 sylancl A A 0 A 1 N + 1 2
129 125 128 eqeltrrd A A 0 A 1 T i 2 π
130 remulcl T i 2 π 2 π T i 2 π 2 π
131 129 7 130 sylancl A A 0 A 1 T i 2 π 2 π
132 118 131 eqeltrrd A A 0 A 1 T i
133 112 132 jca A A 0 A 1 N T i