Metamath Proof Explorer


Theorem antnestALT

Description: Alternative proof of antnest from the valid schema ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 and antnestlaw3 . (Contributed by Adrian Ducourtial, 5-Dec-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion antnestALT φ ψ ψ φ ψ ψ

Proof

Step Hyp Ref Expression
1 pm2.27 φ φ
2 pm2.27 φ φ φ φ ψ ψ
3 1 2 syl φ φ ψ ψ
4 3 mptru φ φ ψ ψ
5 antnestlaw3 φ φ ψ ψ φ ψ φ φ
6 antnestlaw1 φ ψ ψ ψ φ ψ
7 6 imbi1i φ ψ ψ ψ φ φ ψ φ
8 7 imbi1i φ ψ ψ ψ φ φ φ ψ φ φ
9 5 8 bitr4i φ φ ψ ψ φ ψ ψ ψ φ φ
10 antnestlaw3 φ ψ ψ ψ φ φ φ ψ ψ φ ψ ψ
11 9 10 bitri φ φ ψ ψ φ ψ ψ φ ψ ψ
12 4 11 mpbi φ ψ ψ φ ψ ψ