Metamath Proof Explorer


Theorem aoprssdm

Description: Domain of closure of an operation. In contrast to oprssdm , no additional property for S ( -. (/) e. S ) is required! (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aoprssdm.1 xSySxFyS
Assertion aoprssdm S×SdomF

Proof

Step Hyp Ref Expression
1 aoprssdm.1 xSySxFyS
2 relxp RelS×S
3 opelxp xyS×SxSyS
4 df-aov xFy=F'''xy
5 4 1 eqeltrrid xSySF'''xyS
6 afvvdm F'''xySxydomF
7 5 6 syl xSySxydomF
8 3 7 sylbi xyS×SxydomF
9 2 8 relssi S×SdomF