Metamath Proof Explorer


Theorem aovrcl

Description: Reverse closure for an operation value, analogous to afvvv . In contrast to ovrcl , elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1 ReldomF
Assertion aovrcl AFBCAVBV

Proof

Step Hyp Ref Expression
1 aovprc.1 ReldomF
2 df-aov AFB=F'''AB
3 2 eleq1i AFBCF'''ABC
4 afvvdm F'''ABCABdomF
5 df-br AdomFBABdomF
6 1 brrelex12i AdomFBAVBV
7 5 6 sylbir ABdomFAVBV
8 4 7 syl F'''ABCAVBV
9 3 8 sylbi AFBCAVBV