Metamath Proof Explorer


Theorem asclval

Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclfval.a A=algScW
asclfval.f F=ScalarW
asclfval.k K=BaseF
asclfval.s ·˙=W
asclfval.o 1˙=1W
Assertion asclval XKAX=X·˙1˙

Proof

Step Hyp Ref Expression
1 asclfval.a A=algScW
2 asclfval.f F=ScalarW
3 asclfval.k K=BaseF
4 asclfval.s ·˙=W
5 asclfval.o 1˙=1W
6 oveq1 x=Xx·˙1˙=X·˙1˙
7 1 2 3 4 5 asclfval A=xKx·˙1˙
8 ovex X·˙1˙V
9 6 7 8 fvmpt XKAX=X·˙1˙