Metamath Proof Explorer


Theorem asin1half

Description: The arcsine of 1 / 2 is _pi / 6 . (Contributed by SN, 31-Aug-2025)

Ref Expression
Assertion asin1half arcsin 1 2 = π 6

Proof

Step Hyp Ref Expression
1 sincos6thpi sin π 6 = 1 2 cos π 6 = 3 2
2 1 simpli sin π 6 = 1 2
3 2 fveq2i arcsin sin π 6 = arcsin 1 2
4 pire π
5 6re 6
6 0re 0
7 6pos 0 < 6
8 6 7 gtneii 6 0
9 4 5 8 redivcli π 6
10 neghalfpire π 2
11 halfpire π 2
12 2re 2
13 pipos 0 < π
14 2pos 0 < 2
15 4 12 13 14 divgt0ii 0 < π 2
16 lt0neg2 π 2 0 < π 2 π 2 < 0
17 15 16 mpbii π 2 π 2 < 0
18 11 17 ax-mp π 2 < 0
19 4 5 13 7 divgt0ii 0 < π 6
20 10 6 9 18 19 lttrii π 2 < π 6
21 10 9 20 ltleii π 2 π 6
22 2lt6 2 < 6
23 2rp 2 +
24 23 a1i 2 +
25 6rp 6 +
26 25 a1i 6 +
27 pirp π +
28 27 a1i π +
29 24 26 28 ltdiv2d 2 < 6 π 6 < π 2
30 22 29 mpbii π 6 < π 2
31 30 mptru π 6 < π 2
32 9 11 31 ltleii π 6 π 2
33 10 11 elicc2i π 6 π 2 π 2 π 6 π 2 π 6 π 6 π 2
34 9 21 32 33 mpbir3an π 6 π 2 π 2
35 reasinsin π 6 π 2 π 2 arcsin sin π 6 = π 6
36 34 35 ax-mp arcsin sin π 6 = π 6
37 3 36 eqtr3i arcsin 1 2 = π 6