Metamath Proof Explorer


Theorem asinrebnd

Description: Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrebnd A11arcsinAπ2π2

Proof

Step Hyp Ref Expression
1 resinf1o sinπ2π2:π2π21-1 onto11
2 f1ocnv sinπ2π2:π2π21-1 onto11sinπ2π2-1:111-1 ontoπ2π2
3 f1of sinπ2π2-1:111-1 ontoπ2π2sinπ2π2-1:11π2π2
4 1 2 3 mp2b sinπ2π2-1:11π2π2
5 4 ffvelcdmi A11sinπ2π2-1Aπ2π2
6 5 fvresd A11sinπ2π2sinπ2π2-1A=sinsinπ2π2-1A
7 f1ocnvfv2 sinπ2π2:π2π21-1 onto11A11sinπ2π2sinπ2π2-1A=A
8 1 7 mpan A11sinπ2π2sinπ2π2-1A=A
9 6 8 eqtr3d A11sinsinπ2π2-1A=A
10 9 fveq2d A11arcsinsinsinπ2π2-1A=arcsinA
11 reasinsin sinπ2π2-1Aπ2π2arcsinsinsinπ2π2-1A=sinπ2π2-1A
12 5 11 syl A11arcsinsinsinπ2π2-1A=sinπ2π2-1A
13 10 12 eqtr3d A11arcsinA=sinπ2π2-1A
14 13 5 eqeltrd A11arcsinAπ2π2