Metamath Proof Explorer


Theorem resinf1o

Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion resinf1o sinπ2π2:π2π21-1 onto11

Proof

Step Hyp Ref Expression
1 recosf1o cos0π:0π1-1 onto11
2 eqid xπ2π2π2x=xπ2π2π2x
3 halfpire π2
4 neghalfpire π2
5 iccssre π2π2π2π2
6 4 3 5 mp2an π2π2
7 6 sseli xπ2π2x
8 resubcl π2xπ2x
9 3 7 8 sylancr xπ2π2π2x
10 4 3 elicc2i xπ2π2xπ2xxπ2
11 10 simp3bi xπ2π2xπ2
12 subge0 π2x0π2xxπ2
13 3 7 12 sylancr xπ2π20π2xxπ2
14 11 13 mpbird xπ2π20π2x
15 3 recni π2
16 picn π
17 15 negcli π2
18 16 15 negsubi π+π2=ππ2
19 pidiv2halves π2+π2=π
20 16 15 15 19 subaddrii ππ2=π2
21 18 20 eqtri π+π2=π2
22 15 16 17 21 subaddrii π2π=π2
23 10 simp2bi xπ2π2π2x
24 22 23 eqbrtrid xπ2π2π2πx
25 pire π
26 suble π2πxπ2πxπ2xπ
27 3 25 7 26 mp3an12i xπ2π2π2πxπ2xπ
28 24 27 mpbid xπ2π2π2xπ
29 0re 0
30 29 25 elicc2i π2x0ππ2x0π2xπ2xπ
31 9 14 28 30 syl3anbrc xπ2π2π2x0π
32 31 adantl xπ2π2π2x0π
33 29 25 elicc2i y0πy0yyπ
34 33 simp1bi y0πy
35 resubcl π2yπ2y
36 3 34 35 sylancr y0ππ2y
37 33 simp3bi y0πyπ
38 15 15 subnegi π2π2=π2+π2
39 38 19 eqtri π2π2=π
40 37 39 breqtrrdi y0πyπ2π2
41 lesub yπ2π2yπ2π2π2π2y
42 3 4 41 mp3an23 yyπ2π2π2π2y
43 34 42 syl y0πyπ2π2π2π2y
44 40 43 mpbid y0ππ2π2y
45 15 subidi π2π2=0
46 33 simp2bi y0π0y
47 45 46 eqbrtrid y0ππ2π2y
48 suble π2π2yπ2π2yπ2yπ2
49 3 3 34 48 mp3an12i y0ππ2π2yπ2yπ2
50 47 49 mpbid y0ππ2yπ2
51 4 3 elicc2i π2yπ2π2π2yπ2π2yπ2yπ2
52 36 44 50 51 syl3anbrc y0ππ2yπ2π2
53 52 adantl y0ππ2yπ2π2
54 iccssre 0π0π
55 29 25 54 mp2an 0π
56 ax-resscn
57 55 56 sstri 0π
58 57 sseli y0πy
59 6 56 sstri π2π2
60 59 sseli xπ2π2x
61 subsub23 π2yxπ2y=xπ2x=y
62 15 61 mp3an1 yxπ2y=xπ2x=y
63 58 60 62 syl2anr xπ2π2y0ππ2y=xπ2x=y
64 63 adantl xπ2π2y0ππ2y=xπ2x=y
65 eqcom x=π2yπ2y=x
66 eqcom y=π2xπ2x=y
67 64 65 66 3bitr4g xπ2π2y0πx=π2yy=π2x
68 2 32 53 67 f1o2d xπ2π2π2x:π2π21-1 onto0π
69 68 mptru xπ2π2π2x:π2π21-1 onto0π
70 f1oco cos0π:0π1-1 onto11xπ2π2π2x:π2π21-1 onto0πcos0πxπ2π2π2x:π2π21-1 onto11
71 1 69 70 mp2an cos0πxπ2π2π2x:π2π21-1 onto11
72 cosf cos:
73 ffn cos:cosFn
74 72 73 ax-mp cosFn
75 fnssres cosFn0πcos0πFn0π
76 74 57 75 mp2an cos0πFn0π
77 2 31 fmpti xπ2π2π2x:π2π20π
78 fnfco cos0πFn0πxπ2π2π2x:π2π20πcos0πxπ2π2π2xFnπ2π2
79 76 77 78 mp2an cos0πxπ2π2π2xFnπ2π2
80 sinf sin:
81 ffn sin:sinFn
82 80 81 ax-mp sinFn
83 fnssres sinFnπ2π2sinπ2π2Fnπ2π2
84 82 59 83 mp2an sinπ2π2Fnπ2π2
85 eqfnfv cos0πxπ2π2π2xFnπ2π2sinπ2π2Fnπ2π2cos0πxπ2π2π2x=sinπ2π2yπ2π2cos0πxπ2π2π2xy=sinπ2π2y
86 79 84 85 mp2an cos0πxπ2π2π2x=sinπ2π2yπ2π2cos0πxπ2π2π2xy=sinπ2π2y
87 77 ffvelcdmi yπ2π2xπ2π2π2xy0π
88 87 fvresd yπ2π2cos0πxπ2π2π2xy=cosxπ2π2π2xy
89 oveq2 x=yπ2x=π2y
90 ovex π2yV
91 89 2 90 fvmpt yπ2π2xπ2π2π2xy=π2y
92 91 fveq2d yπ2π2cosxπ2π2π2xy=cosπ2y
93 59 sseli yπ2π2y
94 coshalfpim ycosπ2y=siny
95 93 94 syl yπ2π2cosπ2y=siny
96 88 92 95 3eqtrd yπ2π2cos0πxπ2π2π2xy=siny
97 fvco3 xπ2π2π2x:π2π20πyπ2π2cos0πxπ2π2π2xy=cos0πxπ2π2π2xy
98 77 97 mpan yπ2π2cos0πxπ2π2π2xy=cos0πxπ2π2π2xy
99 fvres yπ2π2sinπ2π2y=siny
100 96 98 99 3eqtr4d yπ2π2cos0πxπ2π2π2xy=sinπ2π2y
101 86 100 mprgbir cos0πxπ2π2π2x=sinπ2π2
102 f1oeq1 cos0πxπ2π2π2x=sinπ2π2cos0πxπ2π2π2x:π2π21-1 onto11sinπ2π2:π2π21-1 onto11
103 101 102 ax-mp cos0πxπ2π2π2x:π2π21-1 onto11sinπ2π2:π2π21-1 onto11
104 71 103 mpbi sinπ2π2:π2π21-1 onto11