| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recosf1o |
|- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) |
| 2 |
|
eqid |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) = ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) |
| 3 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 4 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
| 5 |
|
iccssre |
|- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR ) |
| 6 |
4 3 5
|
mp2an |
|- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR |
| 7 |
6
|
sseli |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x e. RR ) |
| 8 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( ( _pi / 2 ) - x ) e. RR ) |
| 9 |
3 7 8
|
sylancr |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. RR ) |
| 10 |
4 3
|
elicc2i |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( x e. RR /\ -u ( _pi / 2 ) <_ x /\ x <_ ( _pi / 2 ) ) ) |
| 11 |
10
|
simp3bi |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x <_ ( _pi / 2 ) ) |
| 12 |
|
subge0 |
|- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
| 13 |
3 7 12
|
sylancr |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
| 14 |
11 13
|
mpbird |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - x ) ) |
| 15 |
3
|
recni |
|- ( _pi / 2 ) e. CC |
| 16 |
|
picn |
|- _pi e. CC |
| 17 |
15
|
negcli |
|- -u ( _pi / 2 ) e. CC |
| 18 |
16 15
|
negsubi |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 19 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
| 20 |
16 15 15 19
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 21 |
18 20
|
eqtri |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 22 |
15 16 17 21
|
subaddrii |
|- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 23 |
10
|
simp2bi |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ x ) |
| 24 |
22 23
|
eqbrtrid |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) <_ x ) |
| 25 |
|
pire |
|- _pi e. RR |
| 26 |
|
suble |
|- ( ( ( _pi / 2 ) e. RR /\ _pi e. RR /\ x e. RR ) -> ( ( ( _pi / 2 ) - _pi ) <_ x <-> ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 27 |
3 25 7 26
|
mp3an12i |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - _pi ) <_ x <-> ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 28 |
24 27
|
mpbid |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) <_ _pi ) |
| 29 |
|
0re |
|- 0 e. RR |
| 30 |
29 25
|
elicc2i |
|- ( ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - x ) e. RR /\ 0 <_ ( ( _pi / 2 ) - x ) /\ ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 31 |
9 14 28 30
|
syl3anbrc |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) ) |
| 32 |
31
|
adantl |
|- ( ( T. /\ x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) ) |
| 33 |
29 25
|
elicc2i |
|- ( y e. ( 0 [,] _pi ) <-> ( y e. RR /\ 0 <_ y /\ y <_ _pi ) ) |
| 34 |
33
|
simp1bi |
|- ( y e. ( 0 [,] _pi ) -> y e. RR ) |
| 35 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ y e. RR ) -> ( ( _pi / 2 ) - y ) e. RR ) |
| 36 |
3 34 35
|
sylancr |
|- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) e. RR ) |
| 37 |
33
|
simp3bi |
|- ( y e. ( 0 [,] _pi ) -> y <_ _pi ) |
| 38 |
15 15
|
subnegi |
|- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = ( ( _pi / 2 ) + ( _pi / 2 ) ) |
| 39 |
38 19
|
eqtri |
|- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi |
| 40 |
37 39
|
breqtrrdi |
|- ( y e. ( 0 [,] _pi ) -> y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) |
| 41 |
|
lesub |
|- ( ( y e. RR /\ ( _pi / 2 ) e. RR /\ -u ( _pi / 2 ) e. RR ) -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
| 42 |
3 4 41
|
mp3an23 |
|- ( y e. RR -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
| 43 |
34 42
|
syl |
|- ( y e. ( 0 [,] _pi ) -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
| 44 |
40 43
|
mpbid |
|- ( y e. ( 0 [,] _pi ) -> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) |
| 45 |
15
|
subidi |
|- ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0 |
| 46 |
33
|
simp2bi |
|- ( y e. ( 0 [,] _pi ) -> 0 <_ y ) |
| 47 |
45 46
|
eqbrtrid |
|- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y ) |
| 48 |
|
suble |
|- ( ( ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ y e. RR ) -> ( ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y <-> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
| 49 |
3 3 34 48
|
mp3an12i |
|- ( y e. ( 0 [,] _pi ) -> ( ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y <-> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
| 50 |
47 49
|
mpbid |
|- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) |
| 51 |
4 3
|
elicc2i |
|- ( ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( ( _pi / 2 ) - y ) e. RR /\ -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) /\ ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
| 52 |
36 44 50 51
|
syl3anbrc |
|- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 53 |
52
|
adantl |
|- ( ( T. /\ y e. ( 0 [,] _pi ) ) -> ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 54 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
| 55 |
29 25 54
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
| 56 |
|
ax-resscn |
|- RR C_ CC |
| 57 |
55 56
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
| 58 |
57
|
sseli |
|- ( y e. ( 0 [,] _pi ) -> y e. CC ) |
| 59 |
6 56
|
sstri |
|- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ CC |
| 60 |
59
|
sseli |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x e. CC ) |
| 61 |
|
subsub23 |
|- ( ( ( _pi / 2 ) e. CC /\ y e. CC /\ x e. CC ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 62 |
15 61
|
mp3an1 |
|- ( ( y e. CC /\ x e. CC ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 63 |
58 60 62
|
syl2anr |
|- ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 64 |
63
|
adantl |
|- ( ( T. /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 65 |
|
eqcom |
|- ( x = ( ( _pi / 2 ) - y ) <-> ( ( _pi / 2 ) - y ) = x ) |
| 66 |
|
eqcom |
|- ( y = ( ( _pi / 2 ) - x ) <-> ( ( _pi / 2 ) - x ) = y ) |
| 67 |
64 65 66
|
3bitr4g |
|- ( ( T. /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) ) -> ( x = ( ( _pi / 2 ) - y ) <-> y = ( ( _pi / 2 ) - x ) ) ) |
| 68 |
2 32 53 67
|
f1o2d |
|- ( T. -> ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) ) |
| 69 |
68
|
mptru |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) |
| 70 |
|
f1oco |
|- ( ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) ) -> ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) |
| 71 |
1 69 70
|
mp2an |
|- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |
| 72 |
|
cosf |
|- cos : CC --> CC |
| 73 |
|
ffn |
|- ( cos : CC --> CC -> cos Fn CC ) |
| 74 |
72 73
|
ax-mp |
|- cos Fn CC |
| 75 |
|
fnssres |
|- ( ( cos Fn CC /\ ( 0 [,] _pi ) C_ CC ) -> ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) ) |
| 76 |
74 57 75
|
mp2an |
|- ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) |
| 77 |
2 31
|
fmpti |
|- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) |
| 78 |
|
fnfco |
|- ( ( ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) ) -> ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 79 |
76 77 78
|
mp2an |
|- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 80 |
|
sinf |
|- sin : CC --> CC |
| 81 |
|
ffn |
|- ( sin : CC --> CC -> sin Fn CC ) |
| 82 |
80 81
|
ax-mp |
|- sin Fn CC |
| 83 |
|
fnssres |
|- ( ( sin Fn CC /\ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ CC ) -> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 84 |
82 59 83
|
mp2an |
|- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 85 |
|
eqfnfv |
|- ( ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) <-> A. y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) ) |
| 86 |
79 84 85
|
mp2an |
|- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) <-> A. y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) |
| 87 |
77
|
ffvelcdmi |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) e. ( 0 [,] _pi ) ) |
| 88 |
87
|
fvresd |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( cos ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
| 89 |
|
oveq2 |
|- ( x = y -> ( ( _pi / 2 ) - x ) = ( ( _pi / 2 ) - y ) ) |
| 90 |
|
ovex |
|- ( ( _pi / 2 ) - y ) e. _V |
| 91 |
89 2 90
|
fvmpt |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) = ( ( _pi / 2 ) - y ) ) |
| 92 |
91
|
fveq2d |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( cos ` ( ( _pi / 2 ) - y ) ) ) |
| 93 |
59
|
sseli |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> y e. CC ) |
| 94 |
|
coshalfpim |
|- ( y e. CC -> ( cos ` ( ( _pi / 2 ) - y ) ) = ( sin ` y ) ) |
| 95 |
93 94
|
syl |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( _pi / 2 ) - y ) ) = ( sin ` y ) ) |
| 96 |
88 92 95
|
3eqtrd |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( sin ` y ) ) |
| 97 |
|
fvco3 |
|- ( ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) /\ y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
| 98 |
77 97
|
mpan |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
| 99 |
|
fvres |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) = ( sin ` y ) ) |
| 100 |
96 98 99
|
3eqtr4d |
|- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) |
| 101 |
86 100
|
mprgbir |
|- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 102 |
|
f1oeq1 |
|- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) ) |
| 103 |
101 102
|
ax-mp |
|- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) |
| 104 |
71 103
|
mpbi |
|- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |