| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tru |
|- T. |
| 2 |
|
fveq2 |
|- ( x = y -> ( tan ` x ) = ( tan ` y ) ) |
| 3 |
|
fveq2 |
|- ( x = A -> ( tan ` x ) = ( tan ` A ) ) |
| 4 |
|
fveq2 |
|- ( x = B -> ( tan ` x ) = ( tan ` B ) ) |
| 5 |
|
0re |
|- 0 e. RR |
| 6 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 7 |
6
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 8 |
|
icossre |
|- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( 0 [,) ( _pi / 2 ) ) C_ RR ) |
| 9 |
5 7 8
|
mp2an |
|- ( 0 [,) ( _pi / 2 ) ) C_ RR |
| 10 |
9
|
sseli |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. RR ) |
| 11 |
|
neghalfpirx |
|- -u ( _pi / 2 ) e. RR* |
| 12 |
|
pire |
|- _pi e. RR |
| 13 |
|
2re |
|- 2 e. RR |
| 14 |
|
pipos |
|- 0 < _pi |
| 15 |
|
2pos |
|- 0 < 2 |
| 16 |
12 13 14 15
|
divgt0ii |
|- 0 < ( _pi / 2 ) |
| 17 |
|
lt0neg2 |
|- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
| 18 |
6 17
|
ax-mp |
|- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 19 |
16 18
|
mpbi |
|- -u ( _pi / 2 ) < 0 |
| 20 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
| 21 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
| 22 |
|
xrltletr |
|- ( ( -u ( _pi / 2 ) e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -u ( _pi / 2 ) < 0 /\ 0 <_ w ) -> -u ( _pi / 2 ) < w ) ) |
| 23 |
20 21 22
|
ixxss1 |
|- ( ( -u ( _pi / 2 ) e. RR* /\ -u ( _pi / 2 ) < 0 ) -> ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 24 |
11 19 23
|
mp2an |
|- ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 25 |
24
|
sseli |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 26 |
|
cosq14gt0 |
|- ( x e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` x ) ) |
| 27 |
25 26
|
syl |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> 0 < ( cos ` x ) ) |
| 28 |
27
|
gt0ne0d |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` x ) =/= 0 ) |
| 29 |
10 28
|
retancld |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( tan ` x ) e. RR ) |
| 30 |
29
|
adantl |
|- ( ( T. /\ x e. ( 0 [,) ( _pi / 2 ) ) ) -> ( tan ` x ) e. RR ) |
| 31 |
10
|
resincld |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( sin ` x ) e. RR ) |
| 32 |
10
|
recoscld |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` x ) e. RR ) |
| 33 |
31 32 28
|
redivcld |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( ( sin ` x ) / ( cos ` x ) ) e. RR ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) e. RR ) |
| 35 |
9
|
sseli |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. RR ) |
| 36 |
35
|
3ad2ant2 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. RR ) |
| 37 |
36
|
resincld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` y ) e. RR ) |
| 38 |
32
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` x ) e. RR ) |
| 39 |
28
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` x ) =/= 0 ) |
| 40 |
37 38 39
|
redivcld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` x ) ) e. RR ) |
| 41 |
36
|
recoscld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) e. RR ) |
| 42 |
24
|
sseli |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 43 |
|
cosq14gt0 |
|- ( y e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` y ) ) |
| 44 |
42 43
|
syl |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> 0 < ( cos ` y ) ) |
| 45 |
44
|
gt0ne0d |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` y ) =/= 0 ) |
| 46 |
45
|
3ad2ant2 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) =/= 0 ) |
| 47 |
37 41 46
|
redivcld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` y ) ) e. RR ) |
| 48 |
|
ioossicc |
|- ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 49 |
24 48
|
sstri |
|- ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 50 |
49
|
sseli |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 51 |
49
|
sseli |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 52 |
|
sinord |
|- ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( x < y <-> ( sin ` x ) < ( sin ` y ) ) ) |
| 53 |
50 51 52
|
syl2an |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y <-> ( sin ` x ) < ( sin ` y ) ) ) |
| 54 |
53
|
biimp3a |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` x ) < ( sin ` y ) ) |
| 55 |
10
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x e. RR ) |
| 56 |
55
|
resincld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` x ) e. RR ) |
| 57 |
27
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( cos ` x ) ) |
| 58 |
|
ltdiv1 |
|- ( ( ( sin ` x ) e. RR /\ ( sin ` y ) e. RR /\ ( ( cos ` x ) e. RR /\ 0 < ( cos ` x ) ) ) -> ( ( sin ` x ) < ( sin ` y ) <-> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) ) |
| 59 |
56 37 38 57 58
|
syl112anc |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) < ( sin ` y ) <-> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) ) |
| 60 |
54 59
|
mpbid |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) |
| 61 |
12
|
rexri |
|- _pi e. RR* |
| 62 |
|
pirp |
|- _pi e. RR+ |
| 63 |
|
rphalflt |
|- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
| 64 |
62 63
|
ax-mp |
|- ( _pi / 2 ) < _pi |
| 65 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
| 66 |
|
xrlttr |
|- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( ( w < ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> w < _pi ) ) |
| 67 |
|
xrltle |
|- ( ( w e. RR* /\ _pi e. RR* ) -> ( w < _pi -> w <_ _pi ) ) |
| 68 |
67
|
3adant2 |
|- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( w < _pi -> w <_ _pi ) ) |
| 69 |
66 68
|
syld |
|- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( ( w < ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> w <_ _pi ) ) |
| 70 |
65 21 69
|
ixxss2 |
|- ( ( _pi e. RR* /\ ( _pi / 2 ) < _pi ) -> ( 0 [,) ( _pi / 2 ) ) C_ ( 0 [,] _pi ) ) |
| 71 |
61 64 70
|
mp2an |
|- ( 0 [,) ( _pi / 2 ) ) C_ ( 0 [,] _pi ) |
| 72 |
71
|
sseli |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( 0 [,] _pi ) ) |
| 73 |
71
|
sseli |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( 0 [,] _pi ) ) |
| 74 |
|
cosord |
|- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( x < y <-> ( cos ` y ) < ( cos ` x ) ) ) |
| 75 |
72 73 74
|
syl2an |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y <-> ( cos ` y ) < ( cos ` x ) ) ) |
| 76 |
75
|
biimp3a |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) < ( cos ` x ) ) |
| 77 |
|
0red |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 e. RR ) |
| 78 |
|
simp1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x e. ( 0 [,) ( _pi / 2 ) ) ) |
| 79 |
|
elico2 |
|- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( x e. ( 0 [,) ( _pi / 2 ) ) <-> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) ) |
| 80 |
5 7 79
|
mp2an |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) <-> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) |
| 81 |
78 80
|
sylib |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) |
| 82 |
81
|
simp2d |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 <_ x ) |
| 83 |
|
simp3 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x < y ) |
| 84 |
77 55 36 82 83
|
lelttrd |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < y ) |
| 85 |
|
simp2 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. ( 0 [,) ( _pi / 2 ) ) ) |
| 86 |
|
elico2 |
|- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( y e. ( 0 [,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) ) |
| 87 |
5 7 86
|
mp2an |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) |
| 88 |
85 87
|
sylib |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) |
| 89 |
88
|
simp3d |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y < ( _pi / 2 ) ) |
| 90 |
|
0xr |
|- 0 e. RR* |
| 91 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( y e. ( 0 (,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 < y /\ y < ( _pi / 2 ) ) ) ) |
| 92 |
90 7 91
|
mp2an |
|- ( y e. ( 0 (,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 < y /\ y < ( _pi / 2 ) ) ) |
| 93 |
36 84 89 92
|
syl3anbrc |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. ( 0 (,) ( _pi / 2 ) ) ) |
| 94 |
|
sincosq1sgn |
|- ( y e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` y ) /\ 0 < ( cos ` y ) ) ) |
| 95 |
93 94
|
syl |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( 0 < ( sin ` y ) /\ 0 < ( cos ` y ) ) ) |
| 96 |
95
|
simprd |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( cos ` y ) ) |
| 97 |
95
|
simpld |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( sin ` y ) ) |
| 98 |
|
ltdiv2 |
|- ( ( ( ( cos ` y ) e. RR /\ 0 < ( cos ` y ) ) /\ ( ( cos ` x ) e. RR /\ 0 < ( cos ` x ) ) /\ ( ( sin ` y ) e. RR /\ 0 < ( sin ` y ) ) ) -> ( ( cos ` y ) < ( cos ` x ) <-> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) ) |
| 99 |
41 96 38 57 37 97 98
|
syl222anc |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( cos ` y ) < ( cos ` x ) <-> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) ) |
| 100 |
76 99
|
mpbid |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) |
| 101 |
34 40 47 60 100
|
lttrd |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) |
| 102 |
10
|
recnd |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. CC ) |
| 103 |
|
tanval |
|- ( ( x e. CC /\ ( cos ` x ) =/= 0 ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
| 104 |
102 28 103
|
syl2anc |
|- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
| 105 |
104
|
3ad2ant1 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
| 106 |
35
|
recnd |
|- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. CC ) |
| 107 |
106
|
3ad2ant2 |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. CC ) |
| 108 |
|
tanval |
|- ( ( y e. CC /\ ( cos ` y ) =/= 0 ) -> ( tan ` y ) = ( ( sin ` y ) / ( cos ` y ) ) ) |
| 109 |
107 46 108
|
syl2anc |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` y ) = ( ( sin ` y ) / ( cos ` y ) ) ) |
| 110 |
101 105 109
|
3brtr4d |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` x ) < ( tan ` y ) ) |
| 111 |
110
|
3expia |
|- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y -> ( tan ` x ) < ( tan ` y ) ) ) |
| 112 |
111
|
adantl |
|- ( ( T. /\ ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) ) -> ( x < y -> ( tan ` x ) < ( tan ` y ) ) ) |
| 113 |
2 3 4 9 30 112
|
ltord1 |
|- ( ( T. /\ ( A e. ( 0 [,) ( _pi / 2 ) ) /\ B e. ( 0 [,) ( _pi / 2 ) ) ) ) -> ( A < B <-> ( tan ` A ) < ( tan ` B ) ) ) |
| 114 |
1 113
|
mpan |
|- ( ( A e. ( 0 [,) ( _pi / 2 ) ) /\ B e. ( 0 [,) ( _pi / 2 ) ) ) -> ( A < B <-> ( tan ` A ) < ( tan ` B ) ) ) |