Step |
Hyp |
Ref |
Expression |
1 |
|
tru |
⊢ ⊤ |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝑦 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝐴 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝐵 ) ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
7 |
6
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
8 |
|
icossre |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 [,) ( π / 2 ) ) ⊆ ℝ ) |
9 |
5 7 8
|
mp2an |
⊢ ( 0 [,) ( π / 2 ) ) ⊆ ℝ |
10 |
9
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ℝ ) |
11 |
|
neghalfpirx |
⊢ - ( π / 2 ) ∈ ℝ* |
12 |
|
pire |
⊢ π ∈ ℝ |
13 |
|
2re |
⊢ 2 ∈ ℝ |
14 |
|
pipos |
⊢ 0 < π |
15 |
|
2pos |
⊢ 0 < 2 |
16 |
12 13 14 15
|
divgt0ii |
⊢ 0 < ( π / 2 ) |
17 |
|
lt0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) |
18 |
6 17
|
ax-mp |
⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
19 |
16 18
|
mpbi |
⊢ - ( π / 2 ) < 0 |
20 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
21 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
22 |
|
xrltletr |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( - ( π / 2 ) < 0 ∧ 0 ≤ 𝑤 ) → - ( π / 2 ) < 𝑤 ) ) |
23 |
20 21 22
|
ixxss1 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) < 0 ) → ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
24 |
11 19 23
|
mp2an |
⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) |
25 |
24
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
26 |
|
cosq14gt0 |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑥 ) ) |
27 |
25 26
|
syl |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑥 ) ) |
28 |
27
|
gt0ne0d |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑥 ) ≠ 0 ) |
29 |
10 28
|
retancld |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( tan ‘ 𝑥 ) ∈ ℝ ) |
30 |
29
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ) → ( tan ‘ 𝑥 ) ∈ ℝ ) |
31 |
10
|
resincld |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
32 |
10
|
recoscld |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑥 ) ∈ ℝ ) |
33 |
31 32 28
|
redivcld |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
35 |
9
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ℝ ) |
36 |
35
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
37 |
36
|
resincld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
38 |
32
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑥 ) ∈ ℝ ) |
39 |
28
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑥 ) ≠ 0 ) |
40 |
37 38 39
|
redivcld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
41 |
36
|
recoscld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) ∈ ℝ ) |
42 |
24
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
43 |
|
cosq14gt0 |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑦 ) ) |
44 |
42 43
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑦 ) ) |
45 |
44
|
gt0ne0d |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑦 ) ≠ 0 ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) ≠ 0 ) |
47 |
37 41 46
|
redivcld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ∈ ℝ ) |
48 |
|
ioossicc |
⊢ ( - ( π / 2 ) (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) [,] ( π / 2 ) ) |
49 |
24 48
|
sstri |
⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) [,] ( π / 2 ) ) |
50 |
49
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
51 |
49
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
52 |
|
sinord |
⊢ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) ) |
53 |
50 51 52
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) ) |
54 |
53
|
biimp3a |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) |
55 |
10
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
56 |
55
|
resincld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
57 |
27
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( cos ‘ 𝑥 ) ) |
58 |
|
ltdiv1 |
⊢ ( ( ( sin ‘ 𝑥 ) ∈ ℝ ∧ ( sin ‘ 𝑦 ) ∈ ℝ ∧ ( ( cos ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑥 ) ) ) → ( ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ↔ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) ) |
59 |
56 37 38 57 58
|
syl112anc |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ↔ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) ) |
60 |
54 59
|
mpbid |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) |
61 |
12
|
rexri |
⊢ π ∈ ℝ* |
62 |
|
pirp |
⊢ π ∈ ℝ+ |
63 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
64 |
62 63
|
ax-mp |
⊢ ( π / 2 ) < π |
65 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
66 |
|
xrlttr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝑤 < ( π / 2 ) ∧ ( π / 2 ) < π ) → 𝑤 < π ) ) |
67 |
|
xrltle |
⊢ ( ( 𝑤 ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝑤 < π → 𝑤 ≤ π ) ) |
68 |
67
|
3adant2 |
⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝑤 < π → 𝑤 ≤ π ) ) |
69 |
66 68
|
syld |
⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝑤 < ( π / 2 ) ∧ ( π / 2 ) < π ) → 𝑤 ≤ π ) ) |
70 |
65 21 69
|
ixxss2 |
⊢ ( ( π ∈ ℝ* ∧ ( π / 2 ) < π ) → ( 0 [,) ( π / 2 ) ) ⊆ ( 0 [,] π ) ) |
71 |
61 64 70
|
mp2an |
⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( 0 [,] π ) |
72 |
71
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( 0 [,] π ) ) |
73 |
71
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( 0 [,] π ) ) |
74 |
|
cosord |
⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( 𝑥 < 𝑦 ↔ ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) ) |
75 |
72 73 74
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) ) |
76 |
75
|
biimp3a |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) |
77 |
|
0red |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 ∈ ℝ ) |
78 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ) |
79 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) ) |
80 |
5 7 79
|
mp2an |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) |
81 |
78 80
|
sylib |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) |
82 |
81
|
simp2d |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 ≤ 𝑥 ) |
83 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
84 |
77 55 36 82 83
|
lelttrd |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < 𝑦 ) |
85 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) |
86 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) ) |
87 |
5 7 86
|
mp2an |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
88 |
85 87
|
sylib |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
89 |
88
|
simp3d |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 < ( π / 2 ) ) |
90 |
|
0xr |
⊢ 0 ∈ ℝ* |
91 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) ) |
92 |
90 7 91
|
mp2an |
⊢ ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
93 |
36 84 89 92
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ) |
94 |
|
sincosq1sgn |
⊢ ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝑦 ) ∧ 0 < ( cos ‘ 𝑦 ) ) ) |
95 |
93 94
|
syl |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 0 < ( sin ‘ 𝑦 ) ∧ 0 < ( cos ‘ 𝑦 ) ) ) |
96 |
95
|
simprd |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( cos ‘ 𝑦 ) ) |
97 |
95
|
simpld |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( sin ‘ 𝑦 ) ) |
98 |
|
ltdiv2 |
⊢ ( ( ( ( cos ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑦 ) ) ∧ ( ( cos ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑥 ) ) ∧ ( ( sin ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( sin ‘ 𝑦 ) ) ) → ( ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ↔ ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) ) |
99 |
41 96 38 57 37 97 98
|
syl222anc |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ↔ ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) ) |
100 |
76 99
|
mpbid |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
101 |
34 40 47 60 100
|
lttrd |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
102 |
10
|
recnd |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ℂ ) |
103 |
|
tanval |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( cos ‘ 𝑥 ) ≠ 0 ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
104 |
102 28 103
|
syl2anc |
⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
105 |
104
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
106 |
35
|
recnd |
⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ℂ ) |
107 |
106
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℂ ) |
108 |
|
tanval |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( cos ‘ 𝑦 ) ≠ 0 ) → ( tan ‘ 𝑦 ) = ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
109 |
107 46 108
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑦 ) = ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
110 |
101 105 109
|
3brtr4d |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) |
111 |
110
|
3expia |
⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) ) |
112 |
111
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) ) → ( 𝑥 < 𝑦 → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) ) |
113 |
2 3 4 9 30 112
|
ltord1 |
⊢ ( ( ⊤ ∧ ( 𝐴 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝐵 ∈ ( 0 [,) ( π / 2 ) ) ) ) → ( 𝐴 < 𝐵 ↔ ( tan ‘ 𝐴 ) < ( tan ‘ 𝐵 ) ) ) |
114 |
1 113
|
mpan |
⊢ ( ( 𝐴 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝐵 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( tan ‘ 𝐴 ) < ( tan ‘ 𝐵 ) ) ) |