Metamath Proof Explorer


Theorem assintopval

Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopval MVassIntOpM=oclIntOpM|oassLawM

Proof

Step Hyp Ref Expression
1 df-assintop assIntOp=mVoclIntOpm|oassLawm
2 fveq2 m=MclIntOpm=clIntOpM
3 breq2 m=MoassLawmoassLawM
4 2 3 rabeqbidv m=MoclIntOpm|oassLawm=oclIntOpM|oassLawM
5 elex MVMV
6 fvex clIntOpMV
7 6 rabex oclIntOpM|oassLawMV
8 7 a1i MVoclIntOpM|oassLawMV
9 1 4 5 8 fvmptd3 MVassIntOpM=oclIntOpM|oassLawM