Metamath Proof Explorer


Theorem atandm4

Description: A compact form of atandm . (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atandm4 AdomarctanA1+A20

Proof

Step Hyp Ref Expression
1 atandm3 AdomarctanAA21
2 sqcl AA2
3 neg1cn 1
4 subeq0 A21A2-1=0A2=1
5 2 3 4 sylancl AA2-1=0A2=1
6 ax-1cn 1
7 subneg A21A2-1=A2+1
8 2 6 7 sylancl AA2-1=A2+1
9 addcom A21A2+1=1+A2
10 2 6 9 sylancl AA2+1=1+A2
11 8 10 eqtrd AA2-1=1+A2
12 11 eqeq1d AA2-1=01+A2=0
13 5 12 bitr3d AA2=11+A2=0
14 13 necon3bid AA211+A20
15 14 pm5.32i AA21A1+A20
16 1 15 bitri AdomarctanA1+A20