Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | atoml.1 | |
|
Assertion | atcvati | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atoml.1 | |
|
2 | 1 | atcvatlem | |
3 | atelch | |
|
4 | atelch | |
|
5 | chjcom | |
|
6 | 3 4 5 | syl2an | |
7 | 6 | psseq2d | |
8 | 7 | anbi2d | |
9 | 1 | atcvatlem | |
10 | 9 | ex | |
11 | 8 10 | sylbird | |
12 | 11 | ancoms | |
13 | 12 | imp | |
14 | chlub | |
|
15 | 14 | 3comr | |
16 | ssnpss | |
|
17 | 15 16 | syl6bi | |
18 | 17 | con2d | |
19 | ianor | |
|
20 | 18 19 | imbitrdi | |
21 | 1 20 | mp3an1 | |
22 | 4 3 21 | syl2an | |
23 | 22 | imp | |
24 | 23 | adantrl | |
25 | 2 13 24 | mpjaod | |
26 | 25 | ex | |