Metamath Proof Explorer


Theorem atcvati

Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 AC
Assertion atcvati BHAtomsCHAtomsA0ABCAHAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 AC
2 1 atcvatlem BHAtomsCHAtomsA0ABC¬BAAHAtoms
3 atelch CHAtomsCC
4 atelch BHAtomsBC
5 chjcom CCBCCB=BC
6 3 4 5 syl2an CHAtomsBHAtomsCB=BC
7 6 psseq2d CHAtomsBHAtomsACBABC
8 7 anbi2d CHAtomsBHAtomsA0ACBA0ABC
9 1 atcvatlem CHAtomsBHAtomsA0ACB¬CAAHAtoms
10 9 ex CHAtomsBHAtomsA0ACB¬CAAHAtoms
11 8 10 sylbird CHAtomsBHAtomsA0ABC¬CAAHAtoms
12 11 ancoms BHAtomsCHAtomsA0ABC¬CAAHAtoms
13 12 imp BHAtomsCHAtomsA0ABC¬CAAHAtoms
14 chlub BCCCACBACABCA
15 14 3comr ACBCCCBACABCA
16 ssnpss BCA¬ABC
17 15 16 syl6bi ACBCCCBACA¬ABC
18 17 con2d ACBCCCABC¬BACA
19 ianor ¬BACA¬BA¬CA
20 18 19 imbitrdi ACBCCCABC¬BA¬CA
21 1 20 mp3an1 BCCCABC¬BA¬CA
22 4 3 21 syl2an BHAtomsCHAtomsABC¬BA¬CA
23 22 imp BHAtomsCHAtomsABC¬BA¬CA
24 23 adantrl BHAtomsCHAtomsA0ABC¬BA¬CA
25 2 13 24 mpjaod BHAtomsCHAtomsA0ABCAHAtoms
26 25 ex BHAtomsCHAtomsA0ABCAHAtoms