Metamath Proof Explorer


Theorem atcveq0

Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcveq0 ACBHAtomsABA=0

Proof

Step Hyp Ref Expression
1 atelch BHAtomsBC
2 cvpss ACBCABAB
3 1 2 sylan2 ACBHAtomsABAB
4 ch0le AC0A
5 4 adantr ACBHAtoms0A
6 3 5 jctild ACBHAtomsAB0AAB
7 atcv0 BHAtoms0B
8 7 adantr BHAtomsAC0B
9 h0elch 0C
10 cvnbtwn3 0CBCAC0B0AABA=0
11 9 10 mp3an1 BCAC0B0AABA=0
12 1 11 sylan BHAtomsAC0B0AABA=0
13 8 12 mpd BHAtomsAC0AABA=0
14 13 ancoms ACBHAtoms0AABA=0
15 6 14 syld ACBHAtomsABA=0
16 breq1 A=0AB0B
17 7 16 syl5ibrcom BHAtomsA=0AB
18 17 adantl ACBHAtomsA=0AB
19 15 18 impbid ACBHAtomsABA=0