Metamath Proof Explorer


Theorem atle

Description: Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012)

Ref Expression
Hypotheses atle.b B=BaseK
atle.l ˙=K
atle.z 0˙=0.K
atle.a A=AtomsK
Assertion atle KHLXBX0˙pAp˙X

Proof

Step Hyp Ref Expression
1 atle.b B=BaseK
2 atle.l ˙=K
3 atle.z 0˙=0.K
4 atle.a A=AtomsK
5 simp1 KHLXBX0˙KHL
6 hlop KHLKOP
7 6 3ad2ant1 KHLXBX0˙KOP
8 1 3 op0cl KOP0˙B
9 7 8 syl KHLXBX0˙0˙B
10 simp2 KHLXBX0˙XB
11 simp3 KHLXBX0˙X0˙
12 eqid <K=<K
13 1 12 3 opltn0 KOPXB0˙<KXX0˙
14 7 10 13 syl2anc KHLXBX0˙0˙<KXX0˙
15 11 14 mpbird KHLXBX0˙0˙<KX
16 eqid joinK=joinK
17 1 2 12 16 4 hlrelat KHL0˙BXB0˙<KXpA0˙<K0˙joinKp0˙joinKp˙X
18 5 9 10 15 17 syl31anc KHLXBX0˙pA0˙<K0˙joinKp0˙joinKp˙X
19 simpl1 KHLXBX0˙pAKHL
20 hlol KHLKOL
21 19 20 syl KHLXBX0˙pAKOL
22 1 4 atbase pApB
23 22 adantl KHLXBX0˙pApB
24 1 16 3 olj02 KOLpB0˙joinKp=p
25 21 23 24 syl2anc KHLXBX0˙pA0˙joinKp=p
26 25 breq1d KHLXBX0˙pA0˙joinKp˙Xp˙X
27 26 biimpd KHLXBX0˙pA0˙joinKp˙Xp˙X
28 27 adantld KHLXBX0˙pA0˙<K0˙joinKp0˙joinKp˙Xp˙X
29 28 reximdva KHLXBX0˙pA0˙<K0˙joinKp0˙joinKp˙XpAp˙X
30 18 29 mpd KHLXBX0˙pAp˙X