Metamath Proof Explorer


Theorem atlltn0

Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses atlltne0.b B=BaseK
atlltne0.s <˙=<K
atlltne0.z 0˙=0.K
Assertion atlltn0 KAtLatXB0˙<˙XX0˙

Proof

Step Hyp Ref Expression
1 atlltne0.b B=BaseK
2 atlltne0.s <˙=<K
3 atlltne0.z 0˙=0.K
4 simpl KAtLatXBKAtLat
5 1 3 atl0cl KAtLat0˙B
6 5 adantr KAtLatXB0˙B
7 simpr KAtLatXBXB
8 eqid K=K
9 8 2 pltval KAtLat0˙BXB0˙<˙X0˙KX0˙X
10 4 6 7 9 syl3anc KAtLatXB0˙<˙X0˙KX0˙X
11 necom X0˙0˙X
12 1 8 3 atl0le KAtLatXB0˙KX
13 12 biantrurd KAtLatXB0˙X0˙KX0˙X
14 11 13 bitr2id KAtLatXB0˙KX0˙XX0˙
15 10 14 bitrd KAtLatXB0˙<˙XX0˙