Metamath Proof Explorer


Theorem atmod1i1

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod1i1 KHLPAXBYBP˙YP˙X˙Y=P˙X˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 simpl KHLPAXBYBKHL
7 simpr2 KHLPAXBYBXB
8 simpr1 KHLPAXBYBPA
9 eqid pmapK=pmapK
10 eqid +𝑃K=+𝑃K
11 1 3 5 9 10 pmapjat2 KHLXBPApmapKP˙X=pmapKP+𝑃KpmapKX
12 6 7 8 11 syl3anc KHLPAXBYBpmapKP˙X=pmapKP+𝑃KpmapKX
13 1 5 atbase PAPB
14 1 2 3 4 9 10 hlmod1i KHLPBXBYBP˙YpmapKP˙X=pmapKP+𝑃KpmapKXP˙X˙Y=P˙X˙Y
15 13 14 syl3anr1 KHLPAXBYBP˙YpmapKP˙X=pmapKP+𝑃KpmapKXP˙X˙Y=P˙X˙Y
16 12 15 mpan2d KHLPAXBYBP˙YP˙X˙Y=P˙X˙Y
17 16 3impia KHLPAXBYBP˙YP˙X˙Y=P˙X˙Y
18 17 eqcomd KHLPAXBYBP˙YP˙X˙Y=P˙X˙Y