Metamath Proof Explorer


Theorem hlmod1i

Description: A version of the modular law pmod1i that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012)

Ref Expression
Hypotheses hlmod.b B=BaseK
hlmod.l ˙=K
hlmod.j ˙=joinK
hlmod.m ˙=meetK
hlmod.f F=pmapK
hlmod.p +˙=+𝑃K
Assertion hlmod1i KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z=X˙Y˙Z

Proof

Step Hyp Ref Expression
1 hlmod.b B=BaseK
2 hlmod.l ˙=K
3 hlmod.j ˙=joinK
4 hlmod.m ˙=meetK
5 hlmod.f F=pmapK
6 hlmod.p +˙=+𝑃K
7 hllat KHLKLat
8 7 3ad2ant1 KHLXBYBZBX˙ZFX˙Y=FX+˙FYKLat
9 simp21 KHLXBYBZBX˙ZFX˙Y=FX+˙FYXB
10 simp22 KHLXBYBZBX˙ZFX˙Y=FX+˙FYYB
11 1 3 latjcl KLatXBYBX˙YB
12 8 9 10 11 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙YB
13 simp23 KHLXBYBZBX˙ZFX˙Y=FX+˙FYZB
14 1 4 latmcl KLatX˙YBZBX˙Y˙ZB
15 8 12 13 14 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙ZB
16 1 4 latmcl KLatYBZBY˙ZB
17 8 10 13 16 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYY˙ZB
18 1 3 latjcl KLatXBY˙ZBX˙Y˙ZB
19 8 9 17 18 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙ZB
20 simp1 KHLXBYBZBX˙ZFX˙Y=FX+˙FYKHL
21 eqid AtomsK=AtomsK
22 1 21 5 pmapssat KHLXBFXAtomsK
23 20 9 22 syl2anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFXAtomsK
24 1 21 5 pmapssat KHLYBFYAtomsK
25 20 10 24 syl2anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFYAtomsK
26 eqid PSubSpK=PSubSpK
27 1 26 5 pmapsub KLatZBFZPSubSpK
28 8 13 27 syl2anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFZPSubSpK
29 simp3l KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Z
30 1 2 5 pmaple KHLXBZBX˙ZFXFZ
31 20 9 13 30 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙ZFXFZ
32 29 31 mpbid KHLXBYBZBX˙ZFX˙Y=FX+˙FYFXFZ
33 21 26 6 pmod1i KHLFXAtomsKFYAtomsKFZPSubSpKFXFZFX+˙FYFZ=FX+˙FYFZ
34 33 3impia KHLFXAtomsKFYAtomsKFZPSubSpKFXFZFX+˙FYFZ=FX+˙FYFZ
35 20 23 25 28 32 34 syl131anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX+˙FYFZ=FX+˙FYFZ
36 1 4 21 5 pmapmeet KHLX˙YBZBFX˙Y˙Z=FX˙YFZ
37 20 12 13 36 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙Y˙Z=FX˙YFZ
38 simp3r KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙Y=FX+˙FY
39 38 ineq1d KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙YFZ=FX+˙FYFZ
40 37 39 eqtrd KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙Y˙Z=FX+˙FYFZ
41 1 4 21 5 pmapmeet KHLYBZBFY˙Z=FYFZ
42 20 10 13 41 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFY˙Z=FYFZ
43 42 oveq2d KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX+˙FY˙Z=FX+˙FYFZ
44 35 40 43 3eqtr4d KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙Y˙Z=FX+˙FY˙Z
45 1 3 5 6 pmapjoin KLatXBY˙ZBFX+˙FY˙ZFX˙Y˙Z
46 8 9 17 45 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX+˙FY˙ZFX˙Y˙Z
47 44 46 eqsstrd KHLXBYBZBX˙ZFX˙Y=FX+˙FYFX˙Y˙ZFX˙Y˙Z
48 1 2 5 pmaple KHLX˙Y˙ZBX˙Y˙ZBX˙Y˙Z˙X˙Y˙ZFX˙Y˙ZFX˙Y˙Z
49 20 15 19 48 syl3anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z˙X˙Y˙ZFX˙Y˙ZFX˙Y˙Z
50 47 49 mpbird KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z˙X˙Y˙Z
51 1 2 3 4 mod1ile KLatXBYBZBX˙ZX˙Y˙Z˙X˙Y˙Z
52 51 3impia KLatXBYBZBX˙ZX˙Y˙Z˙X˙Y˙Z
53 8 9 10 13 29 52 syl131anc KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z˙X˙Y˙Z
54 1 2 8 15 19 50 53 latasymd KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z=X˙Y˙Z
55 54 3expia KHLXBYBZBX˙ZFX˙Y=FX+˙FYX˙Y˙Z=X˙Y˙Z