Description: A version of the modular law pmod1i that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlmod.b | |
|
hlmod.l | |
||
hlmod.j | |
||
hlmod.m | |
||
hlmod.f | |
||
hlmod.p | |
||
Assertion | hlmod1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlmod.b | |
|
2 | hlmod.l | |
|
3 | hlmod.j | |
|
4 | hlmod.m | |
|
5 | hlmod.f | |
|
6 | hlmod.p | |
|
7 | hllat | |
|
8 | 7 | 3ad2ant1 | |
9 | simp21 | |
|
10 | simp22 | |
|
11 | 1 3 | latjcl | |
12 | 8 9 10 11 | syl3anc | |
13 | simp23 | |
|
14 | 1 4 | latmcl | |
15 | 8 12 13 14 | syl3anc | |
16 | 1 4 | latmcl | |
17 | 8 10 13 16 | syl3anc | |
18 | 1 3 | latjcl | |
19 | 8 9 17 18 | syl3anc | |
20 | simp1 | |
|
21 | eqid | |
|
22 | 1 21 5 | pmapssat | |
23 | 20 9 22 | syl2anc | |
24 | 1 21 5 | pmapssat | |
25 | 20 10 24 | syl2anc | |
26 | eqid | |
|
27 | 1 26 5 | pmapsub | |
28 | 8 13 27 | syl2anc | |
29 | simp3l | |
|
30 | 1 2 5 | pmaple | |
31 | 20 9 13 30 | syl3anc | |
32 | 29 31 | mpbid | |
33 | 21 26 6 | pmod1i | |
34 | 33 | 3impia | |
35 | 20 23 25 28 32 34 | syl131anc | |
36 | 1 4 21 5 | pmapmeet | |
37 | 20 12 13 36 | syl3anc | |
38 | simp3r | |
|
39 | 38 | ineq1d | |
40 | 37 39 | eqtrd | |
41 | 1 4 21 5 | pmapmeet | |
42 | 20 10 13 41 | syl3anc | |
43 | 42 | oveq2d | |
44 | 35 40 43 | 3eqtr4d | |
45 | 1 3 5 6 | pmapjoin | |
46 | 8 9 17 45 | syl3anc | |
47 | 44 46 | eqsstrd | |
48 | 1 2 5 | pmaple | |
49 | 20 15 19 48 | syl3anc | |
50 | 47 49 | mpbird | |
51 | 1 2 3 4 | mod1ile | |
52 | 51 | 3impia | |
53 | 8 9 10 13 29 52 | syl131anc | |
54 | 1 2 8 15 19 50 53 | latasymd | |
55 | 54 | 3expia | |