| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlmod.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | hlmod.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | hlmod.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | hlmod.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | hlmod.f | ⊢ 𝐹  =  ( pmap ‘ 𝐾 ) | 
						
							| 6 |  | hlmod.p | ⊢  +   =  ( +𝑃 ‘ 𝐾 ) | 
						
							| 7 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 9 |  | simp21 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | simp22 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 11 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 13 |  | simp23 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 14 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ∈  𝐵 ) | 
						
							| 15 | 8 12 13 14 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ∈  𝐵 ) | 
						
							| 16 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌  ∧  𝑍 )  ∈  𝐵 ) | 
						
							| 17 | 8 10 13 16 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝑌  ∧  𝑍 )  ∈  𝐵 ) | 
						
							| 18 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  ∧  𝑍 )  ∈  𝐵 )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ∈  𝐵 ) | 
						
							| 19 | 8 9 17 18 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ∈  𝐵 ) | 
						
							| 20 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 21 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 22 | 1 21 5 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 23 | 20 9 22 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 24 | 1 21 5 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 25 | 20 10 24 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 26 |  | eqid | ⊢ ( PSubSp ‘ 𝐾 )  =  ( PSubSp ‘ 𝐾 ) | 
						
							| 27 | 1 26 5 | pmapsub | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑍  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑍 )  ∈  ( PSubSp ‘ 𝐾 ) ) | 
						
							| 28 | 8 13 27 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ 𝑍 )  ∈  ( PSubSp ‘ 𝐾 ) ) | 
						
							| 29 |  | simp3l | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  𝑋  ≤  𝑍 ) | 
						
							| 30 | 1 2 5 | pmaple | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑋  ≤  𝑍  ↔  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 31 | 20 9 13 30 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝑋  ≤  𝑍  ↔  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 32 | 29 31 | mpbid | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐹 ‘ 𝑍 ) ) | 
						
							| 33 | 21 26 6 | pmod1i | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝐹 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑍 )  ∈  ( PSubSp ‘ 𝐾 ) ) )  →  ( ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐹 ‘ 𝑍 )  →  ( ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) ) ) | 
						
							| 34 | 33 | 3impia | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝐹 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑍 )  ∈  ( PSubSp ‘ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐹 ‘ 𝑍 ) )  →  ( ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) ) | 
						
							| 35 | 20 23 25 28 32 34 | syl131anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) ) | 
						
							| 36 | 1 4 21 5 | pmapmeet | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  =  ( ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 37 | 20 12 13 36 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  =  ( ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 38 |  | simp3r | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 39 | 38 | ineq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) )  =  ( ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  =  ( ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 41 | 1 4 21 5 | pmapmeet | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) )  =  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 42 | 20 10 13 41 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) )  =  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( ( 𝐹 ‘ 𝑌 )  ∩  ( 𝐹 ‘ 𝑍 ) ) ) ) | 
						
							| 44 | 35 40 43 | 3eqtr4d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) ) ) ) | 
						
							| 45 | 1 3 5 6 | pmapjoin | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  ∧  𝑍 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) ) )  ⊆  ( 𝐹 ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) | 
						
							| 46 | 8 9 17 45 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ ( 𝑌  ∧  𝑍 ) ) )  ⊆  ( 𝐹 ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) | 
						
							| 47 | 44 46 | eqsstrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  ⊆  ( 𝐹 ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) | 
						
							| 48 | 1 2 5 | pmaple | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ∈  𝐵  ∧  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ∈  𝐵 )  →  ( ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ≤  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ↔  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  ⊆  ( 𝐹 ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) ) | 
						
							| 49 | 20 15 19 48 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ≤  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ↔  ( 𝐹 ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) )  ⊆  ( 𝐹 ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) ) | 
						
							| 50 | 47 49 | mpbird | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  ≤  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) | 
						
							| 51 | 1 2 3 4 | mod1ile | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑍  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ≤  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) ) ) | 
						
							| 52 | 51 | 3impia | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋  ≤  𝑍 )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ≤  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) ) | 
						
							| 53 | 8 9 10 13 29 52 | syl131anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) )  ≤  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 ) ) | 
						
							| 54 | 1 2 8 15 19 50 53 | latasymd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) ) )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  =  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) | 
						
							| 55 | 54 | 3expia | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  ≤  𝑍  ∧  ( 𝐹 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑍 )  =  ( 𝑋  ∨  ( 𝑌  ∧  𝑍 ) ) ) ) |