Step |
Hyp |
Ref |
Expression |
1 |
|
hlmod.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlmod.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
hlmod.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
hlmod.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
hlmod.f |
⊢ 𝐹 = ( pmap ‘ 𝐾 ) |
6 |
|
hlmod.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝐾 ∈ Lat ) |
9 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑋 ∈ 𝐵 ) |
10 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝐵 ) |
11 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
13 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑍 ∈ 𝐵 ) |
14 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
15 |
8 12 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
16 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
17 |
8 10 13 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
18 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) |
19 |
8 9 17 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) |
20 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝐾 ∈ HL ) |
21 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
22 |
1 21 5
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
23 |
20 9 22
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
24 |
1 21 5
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
25 |
20 10 24
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
26 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
27 |
1 26 5
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
28 |
8 13 27
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
29 |
|
simp3l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑋 ≤ 𝑍 ) |
30 |
1 2 5
|
pmaple |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) ) |
31 |
20 9 13 30
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) ) |
32 |
29 31
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) |
33 |
21 26 6
|
pmod1i |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) ) |
34 |
33
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
35 |
20 23 25 28 32 34
|
syl131anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
36 |
1 4 21 5
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
37 |
20 12 13 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
38 |
|
simp3r |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
39 |
38
|
ineq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
41 |
1 4 21 5
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
42 |
20 10 13 41
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
44 |
35 40 43
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ) |
45 |
1 3 5 6
|
pmapjoin |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
46 |
8 9 17 45
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
47 |
44 46
|
eqsstrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
48 |
1 2 5
|
pmaple |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ∧ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ↔ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) ) |
49 |
20 15 19 48
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ↔ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) ) |
50 |
47 49
|
mpbird |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) |
51 |
1 2 3 4
|
mod1ile |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
52 |
51
|
3impia |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
53 |
8 9 10 13 29 52
|
syl131anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
54 |
1 2 8 15 19 50 53
|
latasymd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) |
55 |
54
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |