Metamath Proof Explorer


Theorem atmod3i2

Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod3i2 KHLPAXBYBX˙YX˙Y˙P=Y˙X˙P

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 hllat KHLKLat
7 6 3ad2ant1 KHLPAXBYBX˙YKLat
8 simp23 KHLPAXBYBX˙YYB
9 simp22 KHLPAXBYBX˙YXB
10 simp21 KHLPAXBYBX˙YPA
11 1 5 atbase PAPB
12 10 11 syl KHLPAXBYBX˙YPB
13 1 3 latjcl KLatXBPBX˙PB
14 7 9 12 13 syl3anc KHLPAXBYBX˙YX˙PB
15 1 4 latmcom KLatYBX˙PBY˙X˙P=X˙P˙Y
16 7 8 14 15 syl3anc KHLPAXBYBX˙YY˙X˙P=X˙P˙Y
17 1 2 3 4 5 atmod1i2 KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y
18 1 4 latmcom KLatPBYBP˙Y=Y˙P
19 7 12 8 18 syl3anc KHLPAXBYBX˙YP˙Y=Y˙P
20 19 oveq2d KHLPAXBYBX˙YX˙P˙Y=X˙Y˙P
21 16 17 20 3eqtr2rd KHLPAXBYBX˙YX˙Y˙P=Y˙X˙P