Metamath Proof Explorer


Theorem atnlt

Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atnlt.s <˙=<K
atnlt.a A=AtomsK
Assertion atnlt KAtLatPAQA¬P<˙Q

Proof

Step Hyp Ref Expression
1 atnlt.s <˙=<K
2 atnlt.a A=AtomsK
3 1 pltirr KAtLatPA¬P<˙P
4 3 3adant3 KAtLatPAQA¬P<˙P
5 breq2 P=QP<˙PP<˙Q
6 5 notbid P=Q¬P<˙P¬P<˙Q
7 4 6 syl5ibcom KAtLatPAQAP=Q¬P<˙Q
8 eqid K=K
9 8 1 pltle KAtLatPAQAP<˙QPKQ
10 8 2 atcmp KAtLatPAQAPKQP=Q
11 9 10 sylibd KAtLatPAQAP<˙QP=Q
12 11 necon3ad KAtLatPAQAPQ¬P<˙Q
13 7 12 pm2.61dne KAtLatPAQA¬P<˙Q