Metamath Proof Explorer


Theorem avglt1

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avglt1 ABA<BA<A+B2

Proof

Step Hyp Ref Expression
1 ltadd2 ABAA<BA+A<A+B
2 1 3anidm13 ABA<BA+A<A+B
3 simpl ABA
4 3 recnd ABA
5 times2 AA2=A+A
6 4 5 syl ABA2=A+A
7 6 breq1d ABA2<A+BA+A<A+B
8 readdcl ABA+B
9 2re 2
10 2pos 0<2
11 9 10 pm3.2i 20<2
12 11 a1i AB20<2
13 ltmuldiv AA+B20<2A2<A+BA<A+B2
14 3 8 12 13 syl3anc ABA2<A+BA<A+B2
15 2 7 14 3bitr2d ABA<BA<A+B2