Metamath Proof Explorer


Theorem avglt2

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avglt2 ABA<BA+B2<B

Proof

Step Hyp Ref Expression
1 simpr ABB
2 1 recnd ABB
3 2times B2B=B+B
4 2 3 syl AB2B=B+B
5 4 breq2d ABA+B<2BA+B<B+B
6 readdcl ABA+B
7 2re 2
8 2pos 0<2
9 7 8 pm3.2i 20<2
10 9 a1i AB20<2
11 ltdivmul A+BB20<2A+B2<BA+B<2B
12 6 1 10 11 syl3anc ABA+B2<BA+B<2B
13 ltadd1 ABBA<BA+B<B+B
14 13 3anidm23 ABA<BA+B<B+B
15 5 12 14 3bitr4rd ABA<BA+B2<B