Metamath Proof Explorer


Theorem avgle1

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle1 ABABAA+B2

Proof

Step Hyp Ref Expression
1 avglt2 BAB<AB+A2<A
2 1 ancoms ABB<AB+A2<A
3 recn AA
4 recn BB
5 addcom ABA+B=B+A
6 3 4 5 syl2an ABA+B=B+A
7 6 oveq1d ABA+B2=B+A2
8 7 breq1d ABA+B2<AB+A2<A
9 2 8 bitr4d ABB<AA+B2<A
10 9 notbid AB¬B<A¬A+B2<A
11 lenlt ABAB¬B<A
12 readdcl ABA+B
13 rehalfcl A+BA+B2
14 12 13 syl ABA+B2
15 lenlt AA+B2AA+B2¬A+B2<A
16 14 15 syldan ABAA+B2¬A+B2<A
17 10 11 16 3bitr4d ABABAA+B2