Metamath Proof Explorer


Theorem ax11-pm2

Description: Proof of ax-11 from the standard axioms of predicate calculus, similar to PM's proof of alcom (PM*11.2). This proof requires that x and y be distinct. Axiom ax-11 is used in the proof only through nfal , nfsb , sbal , sb8 . See also ax11-pm . (Contributed by BJ, 15-Sep-2018) (Proof modification is discouraged.)

Ref Expression
Assertion ax11-pm2 xyφyxφ

Proof

Step Hyp Ref Expression
1 2stdpc4 xyφzxtyφ
2 1 gen2 tzxyφzxtyφ
3 nfv tφ
4 3 nfal tyφ
5 4 nfal txyφ
6 nfv zφ
7 6 nfal zyφ
8 7 nfal zxyφ
9 5 8 2stdpc5 tzxyφzxtyφxyφtzzxtyφ
10 2 9 ax-mp xyφtzzxtyφ
11 6 nfsbv ztyφ
12 11 sb8f xtyφzzxtyφ
13 12 albii txtyφtzzxtyφ
14 10 13 sylibr xyφtxtyφ
15 sbal tyxφxtyφ
16 15 albii ttyxφtxtyφ
17 14 16 sylibr xyφttyxφ
18 3 nfal txφ
19 18 sb8f yxφttyxφ
20 17 19 sylibr xyφyxφ