| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2stdpc4 |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) |
| 2 |
1
|
gen2 |
⊢ ∀ 𝑡 ∀ 𝑧 ( ∀ 𝑥 ∀ 𝑦 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑡 𝜑 |
| 4 |
3
|
nfal |
⊢ Ⅎ 𝑡 ∀ 𝑦 𝜑 |
| 5 |
4
|
nfal |
⊢ Ⅎ 𝑡 ∀ 𝑥 ∀ 𝑦 𝜑 |
| 6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 7 |
6
|
nfal |
⊢ Ⅎ 𝑧 ∀ 𝑦 𝜑 |
| 8 |
7
|
nfal |
⊢ Ⅎ 𝑧 ∀ 𝑥 ∀ 𝑦 𝜑 |
| 9 |
5 8
|
2stdpc5 |
⊢ ( ∀ 𝑡 ∀ 𝑧 ( ∀ 𝑥 ∀ 𝑦 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑡 ∀ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) ) |
| 10 |
2 9
|
ax-mp |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑡 ∀ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) |
| 11 |
6
|
nfsbv |
⊢ Ⅎ 𝑧 [ 𝑡 / 𝑦 ] 𝜑 |
| 12 |
11
|
sb8f |
⊢ ( ∀ 𝑥 [ 𝑡 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑡 ∀ 𝑥 [ 𝑡 / 𝑦 ] 𝜑 ↔ ∀ 𝑡 ∀ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) |
| 14 |
10 13
|
sylibr |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑡 ∀ 𝑥 [ 𝑡 / 𝑦 ] 𝜑 ) |
| 15 |
|
sbal |
⊢ ( [ 𝑡 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑡 / 𝑦 ] 𝜑 ) |
| 16 |
15
|
albii |
⊢ ( ∀ 𝑡 [ 𝑡 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑡 ∀ 𝑥 [ 𝑡 / 𝑦 ] 𝜑 ) |
| 17 |
14 16
|
sylibr |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑡 [ 𝑡 / 𝑦 ] ∀ 𝑥 𝜑 ) |
| 18 |
3
|
nfal |
⊢ Ⅎ 𝑡 ∀ 𝑥 𝜑 |
| 19 |
18
|
sb8f |
⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑡 [ 𝑡 / 𝑦 ] ∀ 𝑥 𝜑 ) |
| 20 |
17 19
|
sylibr |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |