| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2stdpc4 | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 2 | 1 | gen2 | ⊢ ∀ 𝑡 ∀ 𝑧 ( ∀ 𝑥 ∀ 𝑦 𝜑  →  [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 | 3 | nfal | ⊢ Ⅎ 𝑡 ∀ 𝑦 𝜑 | 
						
							| 5 | 4 | nfal | ⊢ Ⅎ 𝑡 ∀ 𝑥 ∀ 𝑦 𝜑 | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 7 | 6 | nfal | ⊢ Ⅎ 𝑧 ∀ 𝑦 𝜑 | 
						
							| 8 | 7 | nfal | ⊢ Ⅎ 𝑧 ∀ 𝑥 ∀ 𝑦 𝜑 | 
						
							| 9 | 5 8 | 2stdpc5 | ⊢ ( ∀ 𝑡 ∀ 𝑧 ( ∀ 𝑥 ∀ 𝑦 𝜑  →  [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 )  →  ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑡 ∀ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) ) | 
						
							| 10 | 2 9 | ax-mp | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑡 ∀ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 11 | 6 | nfsbv | ⊢ Ⅎ 𝑧 [ 𝑡  /  𝑦 ] 𝜑 | 
						
							| 12 | 11 | sb8f | ⊢ ( ∀ 𝑥 [ 𝑡  /  𝑦 ] 𝜑  ↔  ∀ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑡 ∀ 𝑥 [ 𝑡  /  𝑦 ] 𝜑  ↔  ∀ 𝑡 ∀ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 14 | 10 13 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑡 ∀ 𝑥 [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 15 |  | sbal | ⊢ ( [ 𝑡  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 16 | 15 | albii | ⊢ ( ∀ 𝑡 [ 𝑡  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑡 ∀ 𝑥 [ 𝑡  /  𝑦 ] 𝜑 ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑡 [ 𝑡  /  𝑦 ] ∀ 𝑥 𝜑 ) | 
						
							| 18 | 3 | nfal | ⊢ Ⅎ 𝑡 ∀ 𝑥 𝜑 | 
						
							| 19 | 18 | sb8f | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑  ↔  ∀ 𝑡 [ 𝑡  /  𝑦 ] ∀ 𝑥 𝜑 ) | 
						
							| 20 | 17 19 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ∀ 𝑦 ∀ 𝑥 𝜑 ) |